求解三维H(旋度)-椭圆界面问题的混合Nitsche扩展有限元法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Nan Wang , Hanyu Chu , Jinru Chen , Ying Cai
{"title":"求解三维H(旋度)-椭圆界面问题的混合Nitsche扩展有限元法","authors":"Nan Wang ,&nbsp;Hanyu Chu ,&nbsp;Jinru Chen ,&nbsp;Ying Cai","doi":"10.1016/j.camwa.2025.08.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a Lagrange multiplier to relax the divergence-free constraint and propose a mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems. To ensure stability, we incorporate ghost penalty terms. By exploiting the commuting relationship of the de Rham complex, we derive an inf-sup stability result for the discrete bilinear form, which is uniform with respect to the mesh size, discontinuous parameters, and the interface position. Based on this, we establish the well-posedness of our method and demonstrate optimal error bounds in the discrete energy norm and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical experiments are presented to illustrate the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 22-44"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems\",\"authors\":\"Nan Wang ,&nbsp;Hanyu Chu ,&nbsp;Jinru Chen ,&nbsp;Ying Cai\",\"doi\":\"10.1016/j.camwa.2025.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a Lagrange multiplier to relax the divergence-free constraint and propose a mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems. To ensure stability, we incorporate ghost penalty terms. By exploiting the commuting relationship of the de Rham complex, we derive an inf-sup stability result for the discrete bilinear form, which is uniform with respect to the mesh size, discontinuous parameters, and the interface position. Based on this, we establish the well-posedness of our method and demonstrate optimal error bounds in the discrete energy norm and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical experiments are presented to illustrate the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"199 \",\"pages\":\"Pages 22-44\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003645\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文引入拉格朗日乘子来放宽无散度约束,并提出了求解三维H(旋度)-椭圆界面问题的混合Nitsche扩展有限元法。为了确保稳定性,我们加入了幽灵惩罚条款。通过利用de Rham复合体的交换关系,我们得到了离散双线性形式的稳定性结果,该结果在网格尺寸、不连续参数和界面位置方面是一致的。在此基础上,建立了该方法的适定性,并给出了离散能量范数和L2范数的最优误差界。最后通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems
In this paper, we introduce a Lagrange multiplier to relax the divergence-free constraint and propose a mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems. To ensure stability, we incorporate ghost penalty terms. By exploiting the commuting relationship of the de Rham complex, we derive an inf-sup stability result for the discrete bilinear form, which is uniform with respect to the mesh size, discontinuous parameters, and the interface position. Based on this, we establish the well-posedness of our method and demonstrate optimal error bounds in the discrete energy norm and L2 norm. Finally, numerical experiments are presented to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信