benjamin - bona - mahoney - burgers方程的局部人工边界条件

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Qian Deng, Hongwei Li
{"title":"benjamin - bona - mahoney - burgers方程的局部人工边界条件","authors":"Qian Deng,&nbsp;Hongwei Li","doi":"10.1016/j.aml.2025.109747","DOIUrl":null,"url":null,"abstract":"<div><div>The Benjamin–Bona–Mahony–Burgers equation models small-amplitude long waves, making the study of its numerical solutions scientifically significant. However, solving it numerically in unbounded domains is challenging due to the unboundedness and nonlinearity. To address this, we combine the artificial boundary method with an operator splitting approach to construct high-order local artificial boundary conditions, reducing the original problem to a truncated bounded domain. The stability of the reduced problem is rigorously analyzed. Numerical results confirm the accuracy of the proposed method, and computational examples reveal the underlying physics.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109747"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local artificial boundary conditions for the Benjamin–Bona–Mahony–Burgers equation\",\"authors\":\"Qian Deng,&nbsp;Hongwei Li\",\"doi\":\"10.1016/j.aml.2025.109747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Benjamin–Bona–Mahony–Burgers equation models small-amplitude long waves, making the study of its numerical solutions scientifically significant. However, solving it numerically in unbounded domains is challenging due to the unboundedness and nonlinearity. To address this, we combine the artificial boundary method with an operator splitting approach to construct high-order local artificial boundary conditions, reducing the original problem to a truncated bounded domain. The stability of the reduced problem is rigorously analyzed. Numerical results confirm the accuracy of the proposed method, and computational examples reveal the underlying physics.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109747\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002976\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002976","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Benjamin-Bona-Mahony-Burgers方程模拟了小振幅长波,使其数值解的研究具有科学意义。然而,由于无界性和非线性,在无界域上进行数值求解具有一定的挑战性。为了解决这一问题,我们将人工边界方法与算子分裂方法相结合,构造了高阶局部人工边界条件,将原始问题简化为截断的有界域。严格分析了约简问题的稳定性。数值结果证实了所提方法的准确性,算例揭示了其中的物理原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local artificial boundary conditions for the Benjamin–Bona–Mahony–Burgers equation
The Benjamin–Bona–Mahony–Burgers equation models small-amplitude long waves, making the study of its numerical solutions scientifically significant. However, solving it numerically in unbounded domains is challenging due to the unboundedness and nonlinearity. To address this, we combine the artificial boundary method with an operator splitting approach to construct high-order local artificial boundary conditions, reducing the original problem to a truncated bounded domain. The stability of the reduced problem is rigorously analyzed. Numerical results confirm the accuracy of the proposed method, and computational examples reveal the underlying physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信