利用Si1−xGex应变硅优化超结MOSFET动态性能

IF 3 Q2 PHYSICS, CONDENSED MATTER
Yiming Zhang , Ran Tao , Dawei Gao
{"title":"利用Si1−xGex应变硅优化超结MOSFET动态性能","authors":"Yiming Zhang ,&nbsp;Ran Tao ,&nbsp;Dawei Gao","doi":"10.1016/j.micrna.2025.208341","DOIUrl":null,"url":null,"abstract":"<div><div>Although Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> strain engineering has been extensively developed in low-voltage CMOS technology, its application in superjunction (SJ) power MOSFETs remains insufficiently investigated. This work demonstrates two synergistic advantages of integrating Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> in SJ architectures: (1) carrier mobility enhancement through stress-modulated effective mass reduction, and (2) heterojunction band engineering for improved body diode characteristics. A novel SJ MOSFET featuring a Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> active region atop P/N pillars is proposed and analyzed via TCAD simulations. This design leverages stress effects at the Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub>/Si interface on carrier mobility and band structure, significantly enhancing reverse recovery performance without compromising forward conduction performance. TCAD simulations analyze the effects of Ge contents variation on interface stress and device static/dynamic characteristics. Significant interfacial stress occurs at the Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub>/Si heterojunction, increasing with Ge content <em>x</em>. This stress significantly modulates carrier mobility and bandgap. However, excessive Ge causes a significant increase in defect density within the Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> layer, and stress relaxation induces high-density interface defects, severely degrading leakage current and breakdown voltage. Comprehensive trade-off analysis identifies an optimal Ge composition (<em>x</em> = 0.6), yielding reverse recovery charge <em>Q</em><sub><em>rr</em></sub> = 0.87 μC cm<sup>2</sup> and conduction loss <em>E</em><sub><em>on</em></sub> = 15.34 μJ cm<sup>2</sup>. These values represent 78.7 % lower <em>Q</em><sub><em>rr</em></sub> and 37.3 % lower <em>E</em><sub><em>on</em></sub> than conventional Si-based SJ MOSFETs. These advancements demonstrate significant potential of Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> SJ MOSFETs for high-frequency and high-voltage applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208341"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of superjunction MOSFET dynamic performance using Si1−xGex strained silicon\",\"authors\":\"Yiming Zhang ,&nbsp;Ran Tao ,&nbsp;Dawei Gao\",\"doi\":\"10.1016/j.micrna.2025.208341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> strain engineering has been extensively developed in low-voltage CMOS technology, its application in superjunction (SJ) power MOSFETs remains insufficiently investigated. This work demonstrates two synergistic advantages of integrating Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> in SJ architectures: (1) carrier mobility enhancement through stress-modulated effective mass reduction, and (2) heterojunction band engineering for improved body diode characteristics. A novel SJ MOSFET featuring a Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> active region atop P/N pillars is proposed and analyzed via TCAD simulations. This design leverages stress effects at the Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub>/Si interface on carrier mobility and band structure, significantly enhancing reverse recovery performance without compromising forward conduction performance. TCAD simulations analyze the effects of Ge contents variation on interface stress and device static/dynamic characteristics. Significant interfacial stress occurs at the Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub>/Si heterojunction, increasing with Ge content <em>x</em>. This stress significantly modulates carrier mobility and bandgap. However, excessive Ge causes a significant increase in defect density within the Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> layer, and stress relaxation induces high-density interface defects, severely degrading leakage current and breakdown voltage. Comprehensive trade-off analysis identifies an optimal Ge composition (<em>x</em> = 0.6), yielding reverse recovery charge <em>Q</em><sub><em>rr</em></sub> = 0.87 μC cm<sup>2</sup> and conduction loss <em>E</em><sub><em>on</em></sub> = 15.34 μJ cm<sup>2</sup>. These values represent 78.7 % lower <em>Q</em><sub><em>rr</em></sub> and 37.3 % lower <em>E</em><sub><em>on</em></sub> than conventional Si-based SJ MOSFETs. These advancements demonstrate significant potential of Si<sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub> SJ MOSFETs for high-frequency and high-voltage applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208341\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

尽管Si1−xGex应变工程在低压CMOS技术中得到了广泛的发展,但其在超结(SJ)功率mosfet中的应用仍然没有得到充分的研究。这项工作证明了在SJ架构中集成Si1−xGex的两个协同优势:(1)通过应力调制有效质量减少来增强载流子迁移率,(2)通过异质结带工程来改善体二极管特性。提出了一种新型的SJ型MOSFET,在P/N柱上具有Si1−xGex有源区,并通过TCAD仿真进行了分析。该设计利用Si1−xGex/Si界面上的应力效应对载流子迁移率和能带结构的影响,在不影响正向传导性能的情况下显著提高了反向恢复性能。TCAD仿真分析了Ge含量变化对界面应力和器件静态/动态特性的影响。Si1−xGex/Si异质结处存在显著的界面应力,界面应力随Ge含量的增加而增加。该应力显著调节载流子迁移率和带隙。然而,过量的Ge会导致Si1−xGex层内缺陷密度显著增加,应力松弛会导致高密度的界面缺陷,严重降低漏电流和击穿电压。综合权衡分析确定了最佳Ge组成(x = 0.6),反向恢复电荷Qrr = 0.87 μC cm2,导通损耗Eon = 15.34 μJ cm2。这些值比传统的硅基SJ mosfet低78.7%的Qrr和37.3%的Eon。这些进步证明了Si1−xGex SJ mosfet在高频和高压应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of superjunction MOSFET dynamic performance using Si1−xGex strained silicon
Although Si1−xGex strain engineering has been extensively developed in low-voltage CMOS technology, its application in superjunction (SJ) power MOSFETs remains insufficiently investigated. This work demonstrates two synergistic advantages of integrating Si1−xGex in SJ architectures: (1) carrier mobility enhancement through stress-modulated effective mass reduction, and (2) heterojunction band engineering for improved body diode characteristics. A novel SJ MOSFET featuring a Si1−xGex active region atop P/N pillars is proposed and analyzed via TCAD simulations. This design leverages stress effects at the Si1−xGex/Si interface on carrier mobility and band structure, significantly enhancing reverse recovery performance without compromising forward conduction performance. TCAD simulations analyze the effects of Ge contents variation on interface stress and device static/dynamic characteristics. Significant interfacial stress occurs at the Si1−xGex/Si heterojunction, increasing with Ge content x. This stress significantly modulates carrier mobility and bandgap. However, excessive Ge causes a significant increase in defect density within the Si1−xGex layer, and stress relaxation induces high-density interface defects, severely degrading leakage current and breakdown voltage. Comprehensive trade-off analysis identifies an optimal Ge composition (x = 0.6), yielding reverse recovery charge Qrr = 0.87 μC cm2 and conduction loss Eon = 15.34 μJ cm2. These values represent 78.7 % lower Qrr and 37.3 % lower Eon than conventional Si-based SJ MOSFETs. These advancements demonstrate significant potential of Si1−xGex SJ MOSFETs for high-frequency and high-voltage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信