关于函数域的最小分母问题

IF 0.7 3区 数学 Q3 MATHEMATICS
Noy Soffer Aranov
{"title":"关于函数域的最小分母问题","authors":"Noy Soffer Aranov","doi":"10.1016/j.jnt.2025.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>We study the minimal denominator problem in function fields. In particular, we compute the probability distribution function of the random variable which returns the degree of the smallest denominator <em>Q</em>, for which the ball of a fixed radius around a point contains a rational function of the form <span><math><mfrac><mrow><mi>P</mi></mrow><mrow><mi>Q</mi></mrow></mfrac></math></span>. Moreover, we discuss the distribution of the random variable which returns the denominator of minimal degree, as well as higher dimensional and <em>P</em>-adic generalizations. This can be viewed as a function field generalization of a paper by Chen and Haynes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 35-48"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the minimal denominator problem in function fields\",\"authors\":\"Noy Soffer Aranov\",\"doi\":\"10.1016/j.jnt.2025.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the minimal denominator problem in function fields. In particular, we compute the probability distribution function of the random variable which returns the degree of the smallest denominator <em>Q</em>, for which the ball of a fixed radius around a point contains a rational function of the form <span><math><mfrac><mrow><mi>P</mi></mrow><mrow><mi>Q</mi></mrow></mfrac></math></span>. Moreover, we discuss the distribution of the random variable which returns the denominator of minimal degree, as well as higher dimensional and <em>P</em>-adic generalizations. This can be viewed as a function field generalization of a paper by Chen and Haynes.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 35-48\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002264\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002264","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了函数域中的最小分母问题。特别地,我们计算了随机变量的概率分布函数,该随机变量返回最小分母Q的程度,对于它,围绕一点的固定半径的球包含形式为PQ的有理函数。此外,我们还讨论了返回最小次分母的随机变量的分布,以及高维和p进的推广。这可以看作是Chen和Haynes论文的函数场推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the minimal denominator problem in function fields
We study the minimal denominator problem in function fields. In particular, we compute the probability distribution function of the random variable which returns the degree of the smallest denominator Q, for which the ball of a fixed radius around a point contains a rational function of the form PQ. Moreover, we discuss the distribution of the random variable which returns the denominator of minimal degree, as well as higher dimensional and P-adic generalizations. This can be viewed as a function field generalization of a paper by Chen and Haynes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信