{"title":"关于函数域的最小分母问题","authors":"Noy Soffer Aranov","doi":"10.1016/j.jnt.2025.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>We study the minimal denominator problem in function fields. In particular, we compute the probability distribution function of the random variable which returns the degree of the smallest denominator <em>Q</em>, for which the ball of a fixed radius around a point contains a rational function of the form <span><math><mfrac><mrow><mi>P</mi></mrow><mrow><mi>Q</mi></mrow></mfrac></math></span>. Moreover, we discuss the distribution of the random variable which returns the denominator of minimal degree, as well as higher dimensional and <em>P</em>-adic generalizations. This can be viewed as a function field generalization of a paper by Chen and Haynes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 35-48"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the minimal denominator problem in function fields\",\"authors\":\"Noy Soffer Aranov\",\"doi\":\"10.1016/j.jnt.2025.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the minimal denominator problem in function fields. In particular, we compute the probability distribution function of the random variable which returns the degree of the smallest denominator <em>Q</em>, for which the ball of a fixed radius around a point contains a rational function of the form <span><math><mfrac><mrow><mi>P</mi></mrow><mrow><mi>Q</mi></mrow></mfrac></math></span>. Moreover, we discuss the distribution of the random variable which returns the denominator of minimal degree, as well as higher dimensional and <em>P</em>-adic generalizations. This can be viewed as a function field generalization of a paper by Chen and Haynes.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 35-48\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002264\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002264","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the minimal denominator problem in function fields
We study the minimal denominator problem in function fields. In particular, we compute the probability distribution function of the random variable which returns the degree of the smallest denominator Q, for which the ball of a fixed radius around a point contains a rational function of the form . Moreover, we discuss the distribution of the random variable which returns the denominator of minimal degree, as well as higher dimensional and P-adic generalizations. This can be viewed as a function field generalization of a paper by Chen and Haynes.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.