Shuaixin Liu , Kunqian Li , Yilin Ding , Kuangwei Xu , Qianli Jiang , Q.M. Jonathan Wu , Dalei Song
{"title":"基于bsamizier曲线模型的海参干体原位识别与长度测量","authors":"Shuaixin Liu , Kunqian Li , Yilin Ding , Kuangwei Xu , Qianli Jiang , Q.M. Jonathan Wu , Dalei Song","doi":"10.1016/j.compag.2025.110944","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a novel vision-based framework for in-situ trunk identification and length measurement of sea cucumbers, which plays a crucial role in the monitoring of marine ranching resources and mechanized harvesting. To model sea cucumber trunk curves with varying degrees of bending, we utilize the parametric Bézier curve due to its computational simplicity, stability, and extensive range of transformation possibilities. Then, we propose an end-to-end unified framework that combines parametric Bézier curve modelling with the widely used You-Only-Look-Once (YOLO) pipeline, abbreviated as TISC-Net, and incorporates effective funnel activation and efficient multi-scale attention modules to enhance curve feature perception and learning. Furthermore, we propose incorporating trunk endpoint loss as an additional constraint to effectively mitigate the impact of endpoint deviations on the overall curve. Finally, by utilizing the depth information of pixels located along the trunk curve captured by a binocular camera, we propose accurately estimating the in-situ length of sea cucumbers through space curve integration. We established two challenging benchmark datasets for curve-based in-situ sea cucumber trunk identification. These datasets consist of over 1,000 real-world marine environment images of sea cucumbers, accompanied by Bézier format annotations. We conduct evaluation on SC-ISTI, for which our method achieves mAP50 above 0.9 on both object detection and trunk identification tasks. Extensive length measurement experiments demonstrate that the average absolute relative error is around 0.15. The new benchmarks, source code, and pre-trained models are available on the project homepage: <span><span>https://github.com/OUCVisionGroup/TISC-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"239 ","pages":"Article 110944"},"PeriodicalIF":8.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the in-situ trunk identification and length measurement of sea cucumbers via Bézier curve modelling\",\"authors\":\"Shuaixin Liu , Kunqian Li , Yilin Ding , Kuangwei Xu , Qianli Jiang , Q.M. Jonathan Wu , Dalei Song\",\"doi\":\"10.1016/j.compag.2025.110944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a novel vision-based framework for in-situ trunk identification and length measurement of sea cucumbers, which plays a crucial role in the monitoring of marine ranching resources and mechanized harvesting. To model sea cucumber trunk curves with varying degrees of bending, we utilize the parametric Bézier curve due to its computational simplicity, stability, and extensive range of transformation possibilities. Then, we propose an end-to-end unified framework that combines parametric Bézier curve modelling with the widely used You-Only-Look-Once (YOLO) pipeline, abbreviated as TISC-Net, and incorporates effective funnel activation and efficient multi-scale attention modules to enhance curve feature perception and learning. Furthermore, we propose incorporating trunk endpoint loss as an additional constraint to effectively mitigate the impact of endpoint deviations on the overall curve. Finally, by utilizing the depth information of pixels located along the trunk curve captured by a binocular camera, we propose accurately estimating the in-situ length of sea cucumbers through space curve integration. We established two challenging benchmark datasets for curve-based in-situ sea cucumber trunk identification. These datasets consist of over 1,000 real-world marine environment images of sea cucumbers, accompanied by Bézier format annotations. We conduct evaluation on SC-ISTI, for which our method achieves mAP50 above 0.9 on both object detection and trunk identification tasks. Extensive length measurement experiments demonstrate that the average absolute relative error is around 0.15. The new benchmarks, source code, and pre-trained models are available on the project homepage: <span><span>https://github.com/OUCVisionGroup/TISC-Net</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"239 \",\"pages\":\"Article 110944\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169925010506\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925010506","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards the in-situ trunk identification and length measurement of sea cucumbers via Bézier curve modelling
We introduce a novel vision-based framework for in-situ trunk identification and length measurement of sea cucumbers, which plays a crucial role in the monitoring of marine ranching resources and mechanized harvesting. To model sea cucumber trunk curves with varying degrees of bending, we utilize the parametric Bézier curve due to its computational simplicity, stability, and extensive range of transformation possibilities. Then, we propose an end-to-end unified framework that combines parametric Bézier curve modelling with the widely used You-Only-Look-Once (YOLO) pipeline, abbreviated as TISC-Net, and incorporates effective funnel activation and efficient multi-scale attention modules to enhance curve feature perception and learning. Furthermore, we propose incorporating trunk endpoint loss as an additional constraint to effectively mitigate the impact of endpoint deviations on the overall curve. Finally, by utilizing the depth information of pixels located along the trunk curve captured by a binocular camera, we propose accurately estimating the in-situ length of sea cucumbers through space curve integration. We established two challenging benchmark datasets for curve-based in-situ sea cucumber trunk identification. These datasets consist of over 1,000 real-world marine environment images of sea cucumbers, accompanied by Bézier format annotations. We conduct evaluation on SC-ISTI, for which our method achieves mAP50 above 0.9 on both object detection and trunk identification tasks. Extensive length measurement experiments demonstrate that the average absolute relative error is around 0.15. The new benchmarks, source code, and pre-trained models are available on the project homepage: https://github.com/OUCVisionGroup/TISC-Net.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.