一种面向连续优化的多方向搜索算法

IF 8.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Huang , Jun He , Liehuang Zhu
{"title":"一种面向连续优化的多方向搜索算法","authors":"Wei Huang ,&nbsp;Jun He ,&nbsp;Liehuang Zhu","doi":"10.1016/j.swevo.2025.102138","DOIUrl":null,"url":null,"abstract":"<div><div>The particle swarm optimization algorithm has been successfully applied to various optimization problems. One of its key features is the combination of particle velocity and search direction towards the optimal position in the history and swarm. Recognizing the limitations of the particle swarm optimization algorithm, this paper proposes a new evolutionary algorithm called the multiple direction search algorithm. The algorithm integrates five different search directions, including a multi-point direction constructed using principal component analysis. The integrated direction is generated by the weighted sum of the search directions. Theoretical analysis shows that under mild conditions, the rate of convergence along the weighted direction is no worse than the rate of convergence along the best of single search directions by a positive constant, or even faster in certain cases. The performance of the proposed algorithm was evaluated on three benchmark test suites by computer simulation. Experimental results demonstrate that the proposed method outperforms seven state-of-the-art particle swarm optimization algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"99 ","pages":"Article 102138"},"PeriodicalIF":8.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiple direction search algorithm for continuous optimization\",\"authors\":\"Wei Huang ,&nbsp;Jun He ,&nbsp;Liehuang Zhu\",\"doi\":\"10.1016/j.swevo.2025.102138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The particle swarm optimization algorithm has been successfully applied to various optimization problems. One of its key features is the combination of particle velocity and search direction towards the optimal position in the history and swarm. Recognizing the limitations of the particle swarm optimization algorithm, this paper proposes a new evolutionary algorithm called the multiple direction search algorithm. The algorithm integrates five different search directions, including a multi-point direction constructed using principal component analysis. The integrated direction is generated by the weighted sum of the search directions. Theoretical analysis shows that under mild conditions, the rate of convergence along the weighted direction is no worse than the rate of convergence along the best of single search directions by a positive constant, or even faster in certain cases. The performance of the proposed algorithm was evaluated on three benchmark test suites by computer simulation. Experimental results demonstrate that the proposed method outperforms seven state-of-the-art particle swarm optimization algorithms.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"99 \",\"pages\":\"Article 102138\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225002962\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225002962","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

粒子群优化算法已成功地应用于各种优化问题。该算法的一个重要特征是将粒子速度和搜索方向结合在一起,以寻找历史和群体中的最优位置。认识到粒子群优化算法的局限性,提出了一种新的进化算法——多方向搜索算法。该算法集成了5种不同的搜索方向,其中包括一个利用主成分分析构造的多点搜索方向。积分方向由搜索方向的加权和生成。理论分析表明,在较温和的条件下,沿加权方向的收敛速度不差于沿最佳单搜索方向的收敛速度一个正常数,在某些情况下甚至更快。通过计算机仿真,对该算法在三个基准测试套件上的性能进行了评价。实验结果表明,该方法优于7种最先进的粒子群优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiple direction search algorithm for continuous optimization
The particle swarm optimization algorithm has been successfully applied to various optimization problems. One of its key features is the combination of particle velocity and search direction towards the optimal position in the history and swarm. Recognizing the limitations of the particle swarm optimization algorithm, this paper proposes a new evolutionary algorithm called the multiple direction search algorithm. The algorithm integrates five different search directions, including a multi-point direction constructed using principal component analysis. The integrated direction is generated by the weighted sum of the search directions. Theoretical analysis shows that under mild conditions, the rate of convergence along the weighted direction is no worse than the rate of convergence along the best of single search directions by a positive constant, or even faster in certain cases. The performance of the proposed algorithm was evaluated on three benchmark test suites by computer simulation. Experimental results demonstrate that the proposed method outperforms seven state-of-the-art particle swarm optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信