Simona Boyadzhiyska , Shagnik Das , Thomas Lesgourgues , Kalina Petrova
{"title":"完全二部图的奇拉姆齐数","authors":"Simona Boyadzhiyska , Shagnik Das , Thomas Lesgourgues , Kalina Petrova","doi":"10.1016/j.ejc.2025.104235","DOIUrl":null,"url":null,"abstract":"<div><div>In his study of graph codes, Alon introduced the concept of the <em>odd-Ramsey</em> number of a family of graphs <span><math><mi>H</mi></math></span> in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, defined as the minimum number of colours needed to colour the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> so that every copy of a graph <span><math><mrow><mi>H</mi><mo>∈</mo><mi>H</mi></mrow></math></span> intersects some colour class in an odd number of edges. In this paper, we focus on complete bipartite graphs. First, we completely resolve the problem when <span><math><mi>H</mi></math></span> is the family of all spanning complete bipartite graphs on <span><math><mi>n</mi></math></span> vertices. We then focus on its subfamilies, that is, <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>t</mi></mrow></msub><mo>:</mo><mi>t</mi><mo>∈</mo><mi>T</mi><mo>}</mo></mrow></math></span> for a fixed set of integers <span><math><mrow><mi>T</mi><mo>⊆</mo><mrow><mo>[</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>]</mo></mrow></mrow></math></span>. We prove that the odd-Ramsey problem is equivalent to determining the maximum dimension of a linear binary code avoiding codewords of given weights, and leverage known results from coding theory to deduce asymptotically tight bounds in our setting. We conclude with bounds for the odd-Ramsey numbers of fixed (that is, non-spanning) complete bipartite subgraphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104235"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Odd-Ramsey numbers of complete bipartite graphs\",\"authors\":\"Simona Boyadzhiyska , Shagnik Das , Thomas Lesgourgues , Kalina Petrova\",\"doi\":\"10.1016/j.ejc.2025.104235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In his study of graph codes, Alon introduced the concept of the <em>odd-Ramsey</em> number of a family of graphs <span><math><mi>H</mi></math></span> in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, defined as the minimum number of colours needed to colour the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> so that every copy of a graph <span><math><mrow><mi>H</mi><mo>∈</mo><mi>H</mi></mrow></math></span> intersects some colour class in an odd number of edges. In this paper, we focus on complete bipartite graphs. First, we completely resolve the problem when <span><math><mi>H</mi></math></span> is the family of all spanning complete bipartite graphs on <span><math><mi>n</mi></math></span> vertices. We then focus on its subfamilies, that is, <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>t</mi></mrow></msub><mo>:</mo><mi>t</mi><mo>∈</mo><mi>T</mi><mo>}</mo></mrow></math></span> for a fixed set of integers <span><math><mrow><mi>T</mi><mo>⊆</mo><mrow><mo>[</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>]</mo></mrow></mrow></math></span>. We prove that the odd-Ramsey problem is equivalent to determining the maximum dimension of a linear binary code avoiding codewords of given weights, and leverage known results from coding theory to deduce asymptotically tight bounds in our setting. We conclude with bounds for the odd-Ramsey numbers of fixed (that is, non-spanning) complete bipartite subgraphs.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104235\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001246\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In his study of graph codes, Alon introduced the concept of the odd-Ramsey number of a family of graphs in , defined as the minimum number of colours needed to colour the edges of so that every copy of a graph intersects some colour class in an odd number of edges. In this paper, we focus on complete bipartite graphs. First, we completely resolve the problem when is the family of all spanning complete bipartite graphs on vertices. We then focus on its subfamilies, that is, for a fixed set of integers . We prove that the odd-Ramsey problem is equivalent to determining the maximum dimension of a linear binary code avoiding codewords of given weights, and leverage known results from coding theory to deduce asymptotically tight bounds in our setting. We conclude with bounds for the odd-Ramsey numbers of fixed (that is, non-spanning) complete bipartite subgraphs.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.