图同态上域为无平方的homo复形的同伦类型

IF 0.9 3区 数学 Q1 MATHEMATICS
Soichiro Fujii , Kei Kimura , Yuta Nozaki
{"title":"图同态上域为无平方的homo复形的同伦类型","authors":"Soichiro Fujii ,&nbsp;Kei Kimura ,&nbsp;Yuta Nozaki","doi":"10.1016/j.ejc.2025.104238","DOIUrl":null,"url":null,"abstract":"<div><div>Given finite simple graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, the Hom complex <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is a polyhedral complex having the graph homomorphisms <span><math><mrow><mi>G</mi><mo>→</mo><mi>H</mi></mrow></math></span> as the vertices. We determine the homotopy type of each connected component of <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>H</mi></math></span> is square-free, meaning that it does not contain the 4-cycle graph <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> as a subgraph. Specifically, for a connected <span><math><mi>G</mi></math></span> and a square-free <span><math><mi>H</mi></math></span>, we show that each connected component of <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is homotopy equivalent to a wedge sum of circles. We further show that, given any graph homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></mrow></math></span> to a square-free <span><math><mi>H</mi></math></span>, one can determine the homotopy type of the connected component of <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> containing <span><math><mi>f</mi></math></span> algorithmically.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104238"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy types of Hom complexes of graph homomorphisms whose codomains are square-free\",\"authors\":\"Soichiro Fujii ,&nbsp;Kei Kimura ,&nbsp;Yuta Nozaki\",\"doi\":\"10.1016/j.ejc.2025.104238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given finite simple graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, the Hom complex <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is a polyhedral complex having the graph homomorphisms <span><math><mrow><mi>G</mi><mo>→</mo><mi>H</mi></mrow></math></span> as the vertices. We determine the homotopy type of each connected component of <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>H</mi></math></span> is square-free, meaning that it does not contain the 4-cycle graph <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> as a subgraph. Specifically, for a connected <span><math><mi>G</mi></math></span> and a square-free <span><math><mi>H</mi></math></span>, we show that each connected component of <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is homotopy equivalent to a wedge sum of circles. We further show that, given any graph homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></mrow></math></span> to a square-free <span><math><mi>H</mi></math></span>, one can determine the homotopy type of the connected component of <span><math><mrow><mi>Hom</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> containing <span><math><mi>f</mi></math></span> algorithmically.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104238\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001271\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001271","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定有限简单图G和H, Hom复形Hom(G,H)是一个顶点为图同态G→H的多面体复形。当H是无平方时,我们确定了hm (G,H)的每个连通分量的同伦类型,这意味着它不包含4循环图C4作为子图。具体地说,对于连通G和无平方H,我们证明了hm (G,H)的每个连通分量同伦等价于圆的楔形和。进一步证明,给定任意图同态f:G→H到一个无平方H,可以用算法确定homm (G,H)包含f的连通分量的同伦类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy types of Hom complexes of graph homomorphisms whose codomains are square-free
Given finite simple graphs G and H, the Hom complex Hom(G,H) is a polyhedral complex having the graph homomorphisms GH as the vertices. We determine the homotopy type of each connected component of Hom(G,H) when H is square-free, meaning that it does not contain the 4-cycle graph C4 as a subgraph. Specifically, for a connected G and a square-free H, we show that each connected component of Hom(G,H) is homotopy equivalent to a wedge sum of circles. We further show that, given any graph homomorphism f:GH to a square-free H, one can determine the homotopy type of the connected component of Hom(G,H) containing f algorithmically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信