基于遗传算法和K-means聚类的贝宁光伏板定位gis优化

Nounangnonhou Cossi Télesphore , Aza-Gnandji Maurel Richy , Zantou Fiacre , Kple Melhyas , Didavi Kossoko Babatoundé Audace , Aguemon Dourodjayé Pierre , Amoussou Isaac , Semassou Guy Clarence , Fifatin François-Xavier
{"title":"基于遗传算法和K-means聚类的贝宁光伏板定位gis优化","authors":"Nounangnonhou Cossi Télesphore ,&nbsp;Aza-Gnandji Maurel Richy ,&nbsp;Zantou Fiacre ,&nbsp;Kple Melhyas ,&nbsp;Didavi Kossoko Babatoundé Audace ,&nbsp;Aguemon Dourodjayé Pierre ,&nbsp;Amoussou Isaac ,&nbsp;Semassou Guy Clarence ,&nbsp;Fifatin François-Xavier","doi":"10.1016/j.solcom.2025.100142","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately determining the orientation of fixed-tilt photovoltaic (PV) panels is critical for maximizing annual energy output, yet most installations in Benin continue to rely on empirical or generalized guidelines. This study develops a high-resolution (0.05° × 0.05°) geospatial database of optimal tilt (β*) and azimuth (α*) angles across the country by coupling the Perrin-de-Brichambaut clear-sky model with a Genetic Algorithm, that uses 2023 NASA-POWER meteorological inputs. Results show that β* increases from approximately 6° along the southern coast to around 13° in the far north, while α* evolves from a slight westerly orientation to a moderate easterly preference above 8°N latitude. To facilitate practical implementation, K-means clustering was applied separately to both angle datasets, with the number of clusters determined via the Kneedle algorithm. The resulting 3 tilt and 3 azimuth clusters combine into 8 implementation-ready mounting configurations that retain &gt;95 % of the energy yield provided by fully site-specific optimization, while substantially simplifying system design. The accompanying orientation atlas, GIS layers, and open-source Python code offer a scalable and evidence-based planning tool for PV deployment in Benin, supporting policymakers, engineers, and developers in accelerating the energy transition.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"16 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GIS-based optimization of photovoltaic panel orientation in Benin using genetic algorithms and K-means clustering\",\"authors\":\"Nounangnonhou Cossi Télesphore ,&nbsp;Aza-Gnandji Maurel Richy ,&nbsp;Zantou Fiacre ,&nbsp;Kple Melhyas ,&nbsp;Didavi Kossoko Babatoundé Audace ,&nbsp;Aguemon Dourodjayé Pierre ,&nbsp;Amoussou Isaac ,&nbsp;Semassou Guy Clarence ,&nbsp;Fifatin François-Xavier\",\"doi\":\"10.1016/j.solcom.2025.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately determining the orientation of fixed-tilt photovoltaic (PV) panels is critical for maximizing annual energy output, yet most installations in Benin continue to rely on empirical or generalized guidelines. This study develops a high-resolution (0.05° × 0.05°) geospatial database of optimal tilt (β*) and azimuth (α*) angles across the country by coupling the Perrin-de-Brichambaut clear-sky model with a Genetic Algorithm, that uses 2023 NASA-POWER meteorological inputs. Results show that β* increases from approximately 6° along the southern coast to around 13° in the far north, while α* evolves from a slight westerly orientation to a moderate easterly preference above 8°N latitude. To facilitate practical implementation, K-means clustering was applied separately to both angle datasets, with the number of clusters determined via the Kneedle algorithm. The resulting 3 tilt and 3 azimuth clusters combine into 8 implementation-ready mounting configurations that retain &gt;95 % of the energy yield provided by fully site-specific optimization, while substantially simplifying system design. The accompanying orientation atlas, GIS layers, and open-source Python code offer a scalable and evidence-based planning tool for PV deployment in Benin, supporting policymakers, engineers, and developers in accelerating the energy transition.</div></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"16 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772940025000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940025000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确确定固定倾斜光伏板的方向对于最大限度地提高年能源输出至关重要,但贝宁的大多数装置仍然依赖经验或广义准则。本研究通过将Perrin-de-Brichambaut晴空模型与遗传算法相结合,使用2023年NASA-POWER气象输入,开发了全国范围内最佳倾斜(β*)和方位角(α*)的高分辨率(0.05°× 0.05°)地理空间数据库。结果表明:β*在南纬6°左右增加到北纬13°左右,α*在北纬8°以上由偏西风向偏东风演变。为了便于实际实现,K-means聚类分别应用于两个角度数据集,并通过kneeedle算法确定聚类的数量。由此产生的3个倾斜和3个方位集群组合成8个可实施的安装配置,保留了95%的能量产出,同时大大简化了系统设计。随附的方向图集、GIS层和开源Python代码为贝宁的光伏部署提供了可扩展的、基于证据的规划工具,支持政策制定者、工程师和开发人员加速能源转型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GIS-based optimization of photovoltaic panel orientation in Benin using genetic algorithms and K-means clustering

GIS-based optimization of photovoltaic panel orientation in Benin using genetic algorithms and K-means clustering
Accurately determining the orientation of fixed-tilt photovoltaic (PV) panels is critical for maximizing annual energy output, yet most installations in Benin continue to rely on empirical or generalized guidelines. This study develops a high-resolution (0.05° × 0.05°) geospatial database of optimal tilt (β*) and azimuth (α*) angles across the country by coupling the Perrin-de-Brichambaut clear-sky model with a Genetic Algorithm, that uses 2023 NASA-POWER meteorological inputs. Results show that β* increases from approximately 6° along the southern coast to around 13° in the far north, while α* evolves from a slight westerly orientation to a moderate easterly preference above 8°N latitude. To facilitate practical implementation, K-means clustering was applied separately to both angle datasets, with the number of clusters determined via the Kneedle algorithm. The resulting 3 tilt and 3 azimuth clusters combine into 8 implementation-ready mounting configurations that retain >95 % of the energy yield provided by fully site-specific optimization, while substantially simplifying system design. The accompanying orientation atlas, GIS layers, and open-source Python code offer a scalable and evidence-based planning tool for PV deployment in Benin, supporting policymakers, engineers, and developers in accelerating the energy transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信