k边哈密顿可缝二部图

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Huimei Guo , Rong-Xia Hao , Jou-Ming Chang
{"title":"k边哈密顿可缝二部图","authors":"Huimei Guo ,&nbsp;Rong-Xia Hao ,&nbsp;Jou-Ming Chang","doi":"10.1016/j.dam.2025.08.061","DOIUrl":null,"url":null,"abstract":"<div><div>Kužel et al. expanded the concept of Hamilton-connectivity of a non-bipartite graph <span><math><mi>G</mi></math></span> to the so-called <span><math><mi>k</mi></math></span>-edge-Hamilton-connectivity (<span><math><mi>k</mi></math></span>-EHC for short) (Kužel et al., 2012). For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, let <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mi>v</mi><mo>:</mo><mspace></mspace><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>u</mi><mo>≠</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> and define <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>X</mi><mo>⊂</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a potential edge set. A graph <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-EHC if, for any potential edge set <span><math><mi>X</mi></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> such that every component of the graph induced by <span><math><mi>X</mi></math></span> is a path, the graph <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi></mrow></math></span> has a Hamiltonian cycle passing all edges of <span><math><mi>X</mi></math></span>. This paper extends the analogous notion of <span><math><mi>k</mi></math></span>-EHC to a bipartite graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> to acquire a property called <span><math><mi>k</mi></math></span>-edge-Hamilton-laceability (<span><math><mi>k</mi></math></span>-EHL for short), in which the potential edge set <span><math><mi>X</mi></math></span> must fulfill the balanced condition (i.e., the number of potential edges with both ends appearing at <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> differs by at most one). We then characterize <span><math><mi>k</mi></math></span>-EHL bipartite graphs through three conditions related to fault-tolerant Hamilton-laceability, balanced paired <span><math><mi>k</mi></math></span>-disjoint coverage, and the inheritance property of <span><math><mi>k</mi></math></span>-EHL for subgraphs after removing appropriate fault vertices.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 379-389"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-edge-Hamilton-laceable bipartite graphs\",\"authors\":\"Huimei Guo ,&nbsp;Rong-Xia Hao ,&nbsp;Jou-Ming Chang\",\"doi\":\"10.1016/j.dam.2025.08.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kužel et al. expanded the concept of Hamilton-connectivity of a non-bipartite graph <span><math><mi>G</mi></math></span> to the so-called <span><math><mi>k</mi></math></span>-edge-Hamilton-connectivity (<span><math><mi>k</mi></math></span>-EHC for short) (Kužel et al., 2012). For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, let <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mi>v</mi><mo>:</mo><mspace></mspace><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>u</mi><mo>≠</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> and define <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>X</mi><mo>⊂</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a potential edge set. A graph <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-EHC if, for any potential edge set <span><math><mi>X</mi></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> such that every component of the graph induced by <span><math><mi>X</mi></math></span> is a path, the graph <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi></mrow></math></span> has a Hamiltonian cycle passing all edges of <span><math><mi>X</mi></math></span>. This paper extends the analogous notion of <span><math><mi>k</mi></math></span>-EHC to a bipartite graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> to acquire a property called <span><math><mi>k</mi></math></span>-edge-Hamilton-laceability (<span><math><mi>k</mi></math></span>-EHL for short), in which the potential edge set <span><math><mi>X</mi></math></span> must fulfill the balanced condition (i.e., the number of potential edges with both ends appearing at <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> differs by at most one). We then characterize <span><math><mi>k</mi></math></span>-EHL bipartite graphs through three conditions related to fault-tolerant Hamilton-laceability, balanced paired <span><math><mi>k</mi></math></span>-disjoint coverage, and the inheritance property of <span><math><mi>k</mi></math></span>-EHL for subgraphs after removing appropriate fault vertices.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 379-389\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Kužel等人将非二部图G的Hamilton-connectivity概念扩展为k-edge-Hamilton-connectivity(简称k-EHC) (Kužel et al., 2012)。对于图G=(V(G),E(G)),设E+(G)={uv:u, V∈V(G),u≠V},并定义G+X=(V(G),E(G)∪X),其中X≠E+(G)称为势边集。图G是k- ehc,如果对任意势边集X, |X|≤k,使得由X诱导的图的每个分量都是一条路径,图G+X有一个通过X的所有边的哈密顿循环。本文将k- ehc的类似概念推广到二部图G=(V1,V2,E),得到了k-边-哈密顿可缺性(k- ehl),其中势边集X必须满足平衡条件(即:两端都出现在V1和V2的潜在边的个数相差不超过1)。然后,我们通过三个条件来描述k-EHL二部图,这些条件涉及到容错hamilton - lacability、平衡配对k-不相交覆盖以及k-EHL子图在去除适当的错误顶点后的继承性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-edge-Hamilton-laceable bipartite graphs
Kužel et al. expanded the concept of Hamilton-connectivity of a non-bipartite graph G to the so-called k-edge-Hamilton-connectivity (k-EHC for short) (Kužel et al., 2012). For a graph G=(V(G),E(G)), let E+(G)={uv:u,vV(G),uv} and define G+X=(V(G),E(G)X), where XE+(G) is called a potential edge set. A graph G is k-EHC if, for any potential edge set X with |X|k such that every component of the graph induced by X is a path, the graph G+X has a Hamiltonian cycle passing all edges of X. This paper extends the analogous notion of k-EHC to a bipartite graph G=(V1,V2,E) to acquire a property called k-edge-Hamilton-laceability (k-EHL for short), in which the potential edge set X must fulfill the balanced condition (i.e., the number of potential edges with both ends appearing at V1 and V2 differs by at most one). We then characterize k-EHL bipartite graphs through three conditions related to fault-tolerant Hamilton-laceability, balanced paired k-disjoint coverage, and the inheritance property of k-EHL for subgraphs after removing appropriate fault vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信