{"title":"k边哈密顿可缝二部图","authors":"Huimei Guo , Rong-Xia Hao , Jou-Ming Chang","doi":"10.1016/j.dam.2025.08.061","DOIUrl":null,"url":null,"abstract":"<div><div>Kužel et al. expanded the concept of Hamilton-connectivity of a non-bipartite graph <span><math><mi>G</mi></math></span> to the so-called <span><math><mi>k</mi></math></span>-edge-Hamilton-connectivity (<span><math><mi>k</mi></math></span>-EHC for short) (Kužel et al., 2012). For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, let <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mi>v</mi><mo>:</mo><mspace></mspace><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>u</mi><mo>≠</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> and define <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>X</mi><mo>⊂</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a potential edge set. A graph <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-EHC if, for any potential edge set <span><math><mi>X</mi></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> such that every component of the graph induced by <span><math><mi>X</mi></math></span> is a path, the graph <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi></mrow></math></span> has a Hamiltonian cycle passing all edges of <span><math><mi>X</mi></math></span>. This paper extends the analogous notion of <span><math><mi>k</mi></math></span>-EHC to a bipartite graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> to acquire a property called <span><math><mi>k</mi></math></span>-edge-Hamilton-laceability (<span><math><mi>k</mi></math></span>-EHL for short), in which the potential edge set <span><math><mi>X</mi></math></span> must fulfill the balanced condition (i.e., the number of potential edges with both ends appearing at <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> differs by at most one). We then characterize <span><math><mi>k</mi></math></span>-EHL bipartite graphs through three conditions related to fault-tolerant Hamilton-laceability, balanced paired <span><math><mi>k</mi></math></span>-disjoint coverage, and the inheritance property of <span><math><mi>k</mi></math></span>-EHL for subgraphs after removing appropriate fault vertices.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 379-389"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-edge-Hamilton-laceable bipartite graphs\",\"authors\":\"Huimei Guo , Rong-Xia Hao , Jou-Ming Chang\",\"doi\":\"10.1016/j.dam.2025.08.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kužel et al. expanded the concept of Hamilton-connectivity of a non-bipartite graph <span><math><mi>G</mi></math></span> to the so-called <span><math><mi>k</mi></math></span>-edge-Hamilton-connectivity (<span><math><mi>k</mi></math></span>-EHC for short) (Kužel et al., 2012). For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, let <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mi>v</mi><mo>:</mo><mspace></mspace><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>u</mi><mo>≠</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> and define <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>X</mi><mo>⊂</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a potential edge set. A graph <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-EHC if, for any potential edge set <span><math><mi>X</mi></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> such that every component of the graph induced by <span><math><mi>X</mi></math></span> is a path, the graph <span><math><mrow><mi>G</mi><mo>+</mo><mi>X</mi></mrow></math></span> has a Hamiltonian cycle passing all edges of <span><math><mi>X</mi></math></span>. This paper extends the analogous notion of <span><math><mi>k</mi></math></span>-EHC to a bipartite graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> to acquire a property called <span><math><mi>k</mi></math></span>-edge-Hamilton-laceability (<span><math><mi>k</mi></math></span>-EHL for short), in which the potential edge set <span><math><mi>X</mi></math></span> must fulfill the balanced condition (i.e., the number of potential edges with both ends appearing at <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> differs by at most one). We then characterize <span><math><mi>k</mi></math></span>-EHL bipartite graphs through three conditions related to fault-tolerant Hamilton-laceability, balanced paired <span><math><mi>k</mi></math></span>-disjoint coverage, and the inheritance property of <span><math><mi>k</mi></math></span>-EHL for subgraphs after removing appropriate fault vertices.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 379-389\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Kužel et al. expanded the concept of Hamilton-connectivity of a non-bipartite graph to the so-called -edge-Hamilton-connectivity (-EHC for short) (Kužel et al., 2012). For a graph , let and define , where is called a potential edge set. A graph is -EHC if, for any potential edge set with such that every component of the graph induced by is a path, the graph has a Hamiltonian cycle passing all edges of . This paper extends the analogous notion of -EHC to a bipartite graph to acquire a property called -edge-Hamilton-laceability (-EHL for short), in which the potential edge set must fulfill the balanced condition (i.e., the number of potential edges with both ends appearing at and differs by at most one). We then characterize -EHL bipartite graphs through three conditions related to fault-tolerant Hamilton-laceability, balanced paired -disjoint coverage, and the inheritance property of -EHL for subgraphs after removing appropriate fault vertices.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.