两点应力近似:线性化(孔隙)弹性和斯托克斯流的一种简单而稳健的有限体积方法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jan Martin Nordbotten , Eirik Keilegavlen
{"title":"两点应力近似:线性化(孔隙)弹性和斯托克斯流的一种简单而稳健的有限体积方法","authors":"Jan Martin Nordbotten ,&nbsp;Eirik Keilegavlen","doi":"10.1016/j.camwa.2025.07.035","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct a simple and robust two-point finite volume discretization applicable to isotropic linearized elasticity, valid also in the incompressible Stokes’ limit. The discretization is based only on co-located, cell-centered variables, and has a minimal discretization stencil, using only the two neighboring cells to a face to calculate numerical stresses and fluxes. The discretization naturally couples to finite volume discretizations of flow, providing a stable discretization of poroelasticity.</div><div>We show well-posedness of a weak statement of the continuous formulation in appropriate Hilbert spaces, and identify the appropriate weighted norms for the problem. For the discrete approximations, we prove stability and convergence, both of which are robust in terms of the material parameters. Numerical experiments in 3D support the theoretical results, and provide additional insight into the practical performance of the discretization.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"197 ","pages":"Pages 259-294"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-point stress approximation: A simple and robust finite volume method for linearized (poro-)elasticity and Stokes flow\",\"authors\":\"Jan Martin Nordbotten ,&nbsp;Eirik Keilegavlen\",\"doi\":\"10.1016/j.camwa.2025.07.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we construct a simple and robust two-point finite volume discretization applicable to isotropic linearized elasticity, valid also in the incompressible Stokes’ limit. The discretization is based only on co-located, cell-centered variables, and has a minimal discretization stencil, using only the two neighboring cells to a face to calculate numerical stresses and fluxes. The discretization naturally couples to finite volume discretizations of flow, providing a stable discretization of poroelasticity.</div><div>We show well-posedness of a weak statement of the continuous formulation in appropriate Hilbert spaces, and identify the appropriate weighted norms for the problem. For the discrete approximations, we prove stability and convergence, both of which are robust in terms of the material parameters. Numerical experiments in 3D support the theoretical results, and provide additional insight into the practical performance of the discretization.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"197 \",\"pages\":\"Pages 259-294\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003244\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003244","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了一个简单的、鲁棒的两点有限体积离散方法,适用于各向同性线性化弹性,也适用于不可压缩Stokes极限。离散化仅基于共存的、以单元为中心的变量,并且具有最小的离散化模板,仅使用两个相邻的单元到一个面来计算数值应力和通量。离散化与有限体积流动离散化自然耦合,提供了稳定的孔隙弹性离散化。我们在适当的Hilbert空间中证明了连续公式的弱表述的适定性,并确定了该问题的适当加权范数。对于离散逼近,我们证明了稳定性和收敛性,两者在材料参数方面都是鲁棒的。三维数值实验支持理论结果,并为离散化的实际性能提供了额外的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-point stress approximation: A simple and robust finite volume method for linearized (poro-)elasticity and Stokes flow
In this paper, we construct a simple and robust two-point finite volume discretization applicable to isotropic linearized elasticity, valid also in the incompressible Stokes’ limit. The discretization is based only on co-located, cell-centered variables, and has a minimal discretization stencil, using only the two neighboring cells to a face to calculate numerical stresses and fluxes. The discretization naturally couples to finite volume discretizations of flow, providing a stable discretization of poroelasticity.
We show well-posedness of a weak statement of the continuous formulation in appropriate Hilbert spaces, and identify the appropriate weighted norms for the problem. For the discrete approximations, we prove stability and convergence, both of which are robust in terms of the material parameters. Numerical experiments in 3D support the theoretical results, and provide additional insight into the practical performance of the discretization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信