Prompt2Color:一个基于提示的框架,用于图像派生的颜色生成和可视化优化

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jiayun Hu , Shiqi Jiang , Haiwen Huang , Shuqi Liu , Yun Wang , Changbo Wang , Chenhui Li
{"title":"Prompt2Color:一个基于提示的框架,用于图像派生的颜色生成和可视化优化","authors":"Jiayun Hu ,&nbsp;Shiqi Jiang ,&nbsp;Haiwen Huang ,&nbsp;Shuqi Liu ,&nbsp;Yun Wang ,&nbsp;Changbo Wang ,&nbsp;Chenhui Li","doi":"10.1016/j.cag.2025.104419","DOIUrl":null,"url":null,"abstract":"<div><div>Color is powerful in communicating information in visualizations. However, crafting palettes that improve readability and capture readers’ attention often demands substantial effort, even for seasoned designers. Existing text-based palette generation results in limited and predictable combinations, and finding suitable reference images to extract colors without a clear idea is both tedious and frustrating. In this work, we present Prompt2Color, a novel framework for generating color palettes using prompts. To simplify the process of finding relevant images, we first adopt a concretization approach to visualize the prompts. Furthermore, we introduce an attention-based method for color extraction, which allows for the mining of the visual representations of the prompts. Finally, we utilize a knowledge base to refine the palette and generate the background color to meet aesthetic and design requirements. Evaluations, including quantitative metrics and user experiments, demonstrate the effectiveness of our method.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104419"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt2Color: A prompt-based framework for image-derived color generation and visualization optimization\",\"authors\":\"Jiayun Hu ,&nbsp;Shiqi Jiang ,&nbsp;Haiwen Huang ,&nbsp;Shuqi Liu ,&nbsp;Yun Wang ,&nbsp;Changbo Wang ,&nbsp;Chenhui Li\",\"doi\":\"10.1016/j.cag.2025.104419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Color is powerful in communicating information in visualizations. However, crafting palettes that improve readability and capture readers’ attention often demands substantial effort, even for seasoned designers. Existing text-based palette generation results in limited and predictable combinations, and finding suitable reference images to extract colors without a clear idea is both tedious and frustrating. In this work, we present Prompt2Color, a novel framework for generating color palettes using prompts. To simplify the process of finding relevant images, we first adopt a concretization approach to visualize the prompts. Furthermore, we introduce an attention-based method for color extraction, which allows for the mining of the visual representations of the prompts. Finally, we utilize a knowledge base to refine the palette and generate the background color to meet aesthetic and design requirements. Evaluations, including quantitative metrics and user experiments, demonstrate the effectiveness of our method.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"132 \",\"pages\":\"Article 104419\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325002602\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325002602","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在可视化中,颜色在传达信息方面是强大的。然而,制作提高可读性和吸引读者注意力的调色板通常需要大量的努力,即使是经验丰富的设计师。现有的基于文本的调色板生成结果是有限的和可预测的组合,并且在没有明确想法的情况下找到合适的参考图像来提取颜色既乏味又令人沮丧。在这项工作中,我们提出了Prompt2Color,这是一个使用提示符生成调色板的新框架。为了简化查找相关图像的过程,我们首先采用具体化的方法将提示可视化。此外,我们引入了一种基于注意力的颜色提取方法,该方法允许挖掘提示的视觉表示。最后,我们利用知识库来完善调色板和生成背景色,以满足美学和设计要求。评估,包括定量指标和用户实验,证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prompt2Color: A prompt-based framework for image-derived color generation and visualization optimization

Prompt2Color: A prompt-based framework for image-derived color generation and visualization optimization
Color is powerful in communicating information in visualizations. However, crafting palettes that improve readability and capture readers’ attention often demands substantial effort, even for seasoned designers. Existing text-based palette generation results in limited and predictable combinations, and finding suitable reference images to extract colors without a clear idea is both tedious and frustrating. In this work, we present Prompt2Color, a novel framework for generating color palettes using prompts. To simplify the process of finding relevant images, we first adopt a concretization approach to visualize the prompts. Furthermore, we introduce an attention-based method for color extraction, which allows for the mining of the visual representations of the prompts. Finally, we utilize a knowledge base to refine the palette and generate the background color to meet aesthetic and design requirements. Evaluations, including quantitative metrics and user experiments, demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信