高线性n阶系统的频域反馈控制器设计

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Guang-Da Hu
{"title":"高线性n阶系统的频域反馈控制器设计","authors":"Guang-Da Hu","doi":"10.1016/j.cam.2025.117052","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate feedback stabilization of linear high-order systems. Using a block matrix expression of the fundamental matrix, stability criteria of the systems are derived. We also present the Fourier transform formulas of the first row in the block matrix expression of the fundamental matrix. Based on the stability criteria and the Fourier transform formulas of the first row, a frequency-domain method is presented to design a stabilizing controller of the systems. We emphasize that all the computations in this paper involve only matrices with lower size. Numerical examples are given to illustrate the main results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"475 ","pages":"Article 117052"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback controller design in the frequency domain for high linear n− order systems\",\"authors\":\"Guang-Da Hu\",\"doi\":\"10.1016/j.cam.2025.117052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate feedback stabilization of linear high-order systems. Using a block matrix expression of the fundamental matrix, stability criteria of the systems are derived. We also present the Fourier transform formulas of the first row in the block matrix expression of the fundamental matrix. Based on the stability criteria and the Fourier transform formulas of the first row, a frequency-domain method is presented to design a stabilizing controller of the systems. We emphasize that all the computations in this paper involve only matrices with lower size. Numerical examples are given to illustrate the main results.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"475 \",\"pages\":\"Article 117052\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005667\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005667","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了线性高阶系统的反馈镇定问题。利用基本矩阵的分块矩阵表达式,导出了系统的稳定性判据。我们还给出了基本矩阵的分块矩阵表达式中第一行的傅里叶变换公式。基于稳定性准则和第一行的傅里叶变换公式,提出了一种频域方法来设计系统的稳定控制器。我们强调,本文中所有的计算只涉及较小大小的矩阵。给出了数值算例来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedback controller design in the frequency domain for high linear n− order systems
We investigate feedback stabilization of linear high-order systems. Using a block matrix expression of the fundamental matrix, stability criteria of the systems are derived. We also present the Fourier transform formulas of the first row in the block matrix expression of the fundamental matrix. Based on the stability criteria and the Fourier transform formulas of the first row, a frequency-domain method is presented to design a stabilizing controller of the systems. We emphasize that all the computations in this paper involve only matrices with lower size. Numerical examples are given to illustrate the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信