基于准牛顿L-BFGS的非精确原对偶近点算法求解非光滑凸复合方案的稀疏信号恢复应用

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yongchao Yu , Chongyang Wang
{"title":"基于准牛顿L-BFGS的非精确原对偶近点算法求解非光滑凸复合方案的稀疏信号恢复应用","authors":"Yongchao Yu ,&nbsp;Chongyang Wang","doi":"10.1016/j.cam.2025.117042","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we first propose a new inexact primal–dual proximal point algorithm (iPDPPA) for solving a general nonsmooth convex composite model with three focuses on the basis pursuit, the quadratically constrained <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-minimization and the Dantzig selector in the context of compressive sensing. We then prove its global convergence and discuss its convergence rate in some cases. We also prove that the objective function in the first subproblem of the proposed scheme is strongly convex and continuously differentiable, and then apply the quasi-Newton L-BFGS method to solve the subproblem. Numerical experiments show the effectiveness of L-BFGS-iPDPPA on sparse signal recovery.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"475 ","pages":"Article 117042"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Newton L-BFGS based inexact primal–dual proximal point algorithms to solve nonsmooth convex composite programs for sparse signal recovery applications\",\"authors\":\"Yongchao Yu ,&nbsp;Chongyang Wang\",\"doi\":\"10.1016/j.cam.2025.117042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we first propose a new inexact primal–dual proximal point algorithm (iPDPPA) for solving a general nonsmooth convex composite model with three focuses on the basis pursuit, the quadratically constrained <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-minimization and the Dantzig selector in the context of compressive sensing. We then prove its global convergence and discuss its convergence rate in some cases. We also prove that the objective function in the first subproblem of the proposed scheme is strongly convex and continuously differentiable, and then apply the quasi-Newton L-BFGS method to solve the subproblem. Numerical experiments show the effectiveness of L-BFGS-iPDPPA on sparse signal recovery.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"475 \",\"pages\":\"Article 117042\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005564\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005564","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在此工作中,我们首先提出了一种新的非精确原始对偶近点算法(iPDPPA)来求解一般非光滑凸复合模型,该算法具有三个重点:基追求,二次约束最小化和Dantzig选择。然后证明了它的全局收敛性,并讨论了它在某些情况下的收敛速度。证明了该方案的第一个子问题的目标函数是强凸且连续可微的,并应用拟牛顿L-BFGS方法求解了该子问题。数值实验证明了L-BFGS-iPDPPA对稀疏信号恢复的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Newton L-BFGS based inexact primal–dual proximal point algorithms to solve nonsmooth convex composite programs for sparse signal recovery applications
In this work, we first propose a new inexact primal–dual proximal point algorithm (iPDPPA) for solving a general nonsmooth convex composite model with three focuses on the basis pursuit, the quadratically constrained 1-minimization and the Dantzig selector in the context of compressive sensing. We then prove its global convergence and discuss its convergence rate in some cases. We also prove that the objective function in the first subproblem of the proposed scheme is strongly convex and continuously differentiable, and then apply the quasi-Newton L-BFGS method to solve the subproblem. Numerical experiments show the effectiveness of L-BFGS-iPDPPA on sparse signal recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信