基于CNN-LSTM混合深度学习模型的SW-NIR预测爪哇李子含糖量

IF 3.6
M. Mirazus Salehin , Md. Rahber Islam Rafe , Al Amin, Kazi Shakibur Rahman, Md. Rakibul Islam Rakib, Sahabuddin Ahamed, Anisur Rahman
{"title":"基于CNN-LSTM混合深度学习模型的SW-NIR预测爪哇李子含糖量","authors":"M. Mirazus Salehin ,&nbsp;Md. Rahber Islam Rafe ,&nbsp;Al Amin,&nbsp;Kazi Shakibur Rahman,&nbsp;Md. Rakibul Islam Rakib,&nbsp;Sahabuddin Ahamed,&nbsp;Anisur Rahman","doi":"10.1016/j.meafoo.2025.100246","DOIUrl":null,"url":null,"abstract":"<div><div>Sugar content is the most important parameter for consumer acceptance and post-harvest management of Java Plum (<em>Syzygium cumini L</em>.). Traditional methods for sugar content analysis are often time-consuming and labor-intensive. The short wave-near infrared (SW-NIR) spectroscopy offers a rapid and non-destructive alternative for assessing sugar content in fruits. In this study proposed a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) based hybrid deep neural network model and partial least square regression (PLSR) algorithm for predicting sugar content in Java Plum using SW-NIR spectroscopy. The proposed model combines the strengths of CNN-LSTM to capture sequential dependencies of SW-NIR data in the ranges of 900–1700 nm. The hybrid model is made of 17 layers of neural network and consists of 1D-CNN, LSTM, GroupNormalization and Regularizer layers. At first, the spectra data was preprocessed using several preprocessing techniques independently and developed PLSR model to select the best preprocessing technique. The Savitsky-Golay 2nd derivative preprocessing spectra yielded the most optimum result for PLSR model with coefficient of calibration <span><math><msub><mi>R</mi><mrow><mi>c</mi><mi>a</mi><mi>l</mi></mrow></msub></math></span> = 0.677 and coefficient of prediction <span><math><msub><mi>R</mi><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> = 0.554 The proposed CNN-LSTM-based hybrid deep learning model showed the <span><math><msub><mi>R</mi><mrow><mi>c</mi><mi>a</mi><mi>l</mi></mrow></msub></math></span> = 0.843 and <span><math><msub><mi>R</mi><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> = 0.83. The results demonstrated the potential of SW-NIR spectroscopy combined with CNN-LSTM-based hybrid deep learning model for determination of soluble sugar content in Java plum.</div></div>","PeriodicalId":100898,"journal":{"name":"Measurement: Food","volume":"19 ","pages":"Article 100246"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of sugar content in Java Plum using SW-NIR spectroscopy with CNN-LSTM based hybrid deep learning model\",\"authors\":\"M. Mirazus Salehin ,&nbsp;Md. Rahber Islam Rafe ,&nbsp;Al Amin,&nbsp;Kazi Shakibur Rahman,&nbsp;Md. Rakibul Islam Rakib,&nbsp;Sahabuddin Ahamed,&nbsp;Anisur Rahman\",\"doi\":\"10.1016/j.meafoo.2025.100246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sugar content is the most important parameter for consumer acceptance and post-harvest management of Java Plum (<em>Syzygium cumini L</em>.). Traditional methods for sugar content analysis are often time-consuming and labor-intensive. The short wave-near infrared (SW-NIR) spectroscopy offers a rapid and non-destructive alternative for assessing sugar content in fruits. In this study proposed a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) based hybrid deep neural network model and partial least square regression (PLSR) algorithm for predicting sugar content in Java Plum using SW-NIR spectroscopy. The proposed model combines the strengths of CNN-LSTM to capture sequential dependencies of SW-NIR data in the ranges of 900–1700 nm. The hybrid model is made of 17 layers of neural network and consists of 1D-CNN, LSTM, GroupNormalization and Regularizer layers. At first, the spectra data was preprocessed using several preprocessing techniques independently and developed PLSR model to select the best preprocessing technique. The Savitsky-Golay 2nd derivative preprocessing spectra yielded the most optimum result for PLSR model with coefficient of calibration <span><math><msub><mi>R</mi><mrow><mi>c</mi><mi>a</mi><mi>l</mi></mrow></msub></math></span> = 0.677 and coefficient of prediction <span><math><msub><mi>R</mi><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> = 0.554 The proposed CNN-LSTM-based hybrid deep learning model showed the <span><math><msub><mi>R</mi><mrow><mi>c</mi><mi>a</mi><mi>l</mi></mrow></msub></math></span> = 0.843 and <span><math><msub><mi>R</mi><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> = 0.83. The results demonstrated the potential of SW-NIR spectroscopy combined with CNN-LSTM-based hybrid deep learning model for determination of soluble sugar content in Java plum.</div></div>\",\"PeriodicalId\":100898,\"journal\":{\"name\":\"Measurement: Food\",\"volume\":\"19 \",\"pages\":\"Article 100246\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement: Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772275925000334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772275925000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

含糖量是影响爪哇梅消费者接受度和采后管理的重要指标。传统的糖含量分析方法往往耗时费力。短波近红外(SW-NIR)光谱技术为水果中糖含量的测定提供了一种快速、无损的方法。本研究提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)的混合深度神经网络模型和偏最小二乘回归(PLSR)算法,利用SW-NIR光谱预测爪哇李子的糖含量。该模型结合了CNN-LSTM的优势,可以捕获900-1700 nm范围内的ss - nir数据的顺序依赖关系。混合模型由17层神经网络组成,由1D-CNN、LSTM、GroupNormalization和Regularizer层组成。首先,采用多种预处理技术对光谱数据进行独立预处理,并建立PLSR模型选择最佳预处理技术。基于Savitsky-Golay二阶导数预处理的PLSR模型结果最优,校正系数Rcal = 0.677,预测系数Rpred = 0.554,基于cnn - lstm的混合深度学习模型Rcal = 0.843,预测系数Rpred = 0.83。结果表明,SW-NIR光谱结合基于cnn - lstm的混合深度学习模型在测定爪哇梅可溶性糖含量方面具有一定的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of sugar content in Java Plum using SW-NIR spectroscopy with CNN-LSTM based hybrid deep learning model

Prediction of sugar content in Java Plum using SW-NIR spectroscopy with CNN-LSTM based hybrid deep learning model
Sugar content is the most important parameter for consumer acceptance and post-harvest management of Java Plum (Syzygium cumini L.). Traditional methods for sugar content analysis are often time-consuming and labor-intensive. The short wave-near infrared (SW-NIR) spectroscopy offers a rapid and non-destructive alternative for assessing sugar content in fruits. In this study proposed a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) based hybrid deep neural network model and partial least square regression (PLSR) algorithm for predicting sugar content in Java Plum using SW-NIR spectroscopy. The proposed model combines the strengths of CNN-LSTM to capture sequential dependencies of SW-NIR data in the ranges of 900–1700 nm. The hybrid model is made of 17 layers of neural network and consists of 1D-CNN, LSTM, GroupNormalization and Regularizer layers. At first, the spectra data was preprocessed using several preprocessing techniques independently and developed PLSR model to select the best preprocessing technique. The Savitsky-Golay 2nd derivative preprocessing spectra yielded the most optimum result for PLSR model with coefficient of calibration Rcal = 0.677 and coefficient of prediction Rpred = 0.554 The proposed CNN-LSTM-based hybrid deep learning model showed the Rcal = 0.843 and Rpred = 0.83. The results demonstrated the potential of SW-NIR spectroscopy combined with CNN-LSTM-based hybrid deep learning model for determination of soluble sugar content in Java plum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信