{"title":"具有可变几何和力学特性的增强型血流模型的熵稳定和良好平衡方案","authors":"Raimund Bürger , Andrés Guerra , Carlos A. Vega","doi":"10.1016/j.amc.2025.129719","DOIUrl":null,"url":null,"abstract":"<div><div>The flow of blood through a vessel can be described by a hyperbolic system of balance equations for the cross-sectional area and averaged velocity as functions of axial spatial position and time. The variable arterial wall rigidity and the equilibrium cross-sectional area are incorporated within the so-called tube law that gives rise to an internal pressure term. This system can be written as a conservative hyperbolic system for five unknowns. An entropy stable scheme for this augmented one-dimensional blood flow model is developed based on entropy conservative numerical flux. It is proved that the proposed scheme is well-balanced in the sense that it preserves both trivial (zero velocity) and non-trivial (non-zero velocity) steady-state solutions. Several demanding numerical tests show that the scheme can handle various kinds of shocks and preserves stationary solutions when geometrical and mechanical properties of the vessel are variable.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129719"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An entropy stable and well-balanced scheme for an augmented blood flow model with variable geometrical and mechanical properties\",\"authors\":\"Raimund Bürger , Andrés Guerra , Carlos A. Vega\",\"doi\":\"10.1016/j.amc.2025.129719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The flow of blood through a vessel can be described by a hyperbolic system of balance equations for the cross-sectional area and averaged velocity as functions of axial spatial position and time. The variable arterial wall rigidity and the equilibrium cross-sectional area are incorporated within the so-called tube law that gives rise to an internal pressure term. This system can be written as a conservative hyperbolic system for five unknowns. An entropy stable scheme for this augmented one-dimensional blood flow model is developed based on entropy conservative numerical flux. It is proved that the proposed scheme is well-balanced in the sense that it preserves both trivial (zero velocity) and non-trivial (non-zero velocity) steady-state solutions. Several demanding numerical tests show that the scheme can handle various kinds of shocks and preserves stationary solutions when geometrical and mechanical properties of the vessel are variable.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129719\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009630032500445X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500445X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An entropy stable and well-balanced scheme for an augmented blood flow model with variable geometrical and mechanical properties
The flow of blood through a vessel can be described by a hyperbolic system of balance equations for the cross-sectional area and averaged velocity as functions of axial spatial position and time. The variable arterial wall rigidity and the equilibrium cross-sectional area are incorporated within the so-called tube law that gives rise to an internal pressure term. This system can be written as a conservative hyperbolic system for five unknowns. An entropy stable scheme for this augmented one-dimensional blood flow model is developed based on entropy conservative numerical flux. It is proved that the proposed scheme is well-balanced in the sense that it preserves both trivial (zero velocity) and non-trivial (non-zero velocity) steady-state solutions. Several demanding numerical tests show that the scheme can handle various kinds of shocks and preserves stationary solutions when geometrical and mechanical properties of the vessel are variable.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.