具有非局部扩散的两株流行病模型的空间动力学

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Shi-Ke Hu , Jiawei Huo , Rong Yuan , Hai-Feng Huo
{"title":"具有非局部扩散的两株流行病模型的空间动力学","authors":"Shi-Ke Hu ,&nbsp;Jiawei Huo ,&nbsp;Rong Yuan ,&nbsp;Hai-Feng Huo","doi":"10.1016/j.nonrwa.2025.104460","DOIUrl":null,"url":null,"abstract":"<div><div>This article studies a nonlocal dispersal two-strain epidemic model with Neumann boundary condition in a heterogeneous environment. We define the basic reproduction number for this model and demonstrate that the disease will persist if the basic reproduction number is bigger than one, but will diminish otherwise. We also investigate the competitive exclusion of two strains in various local distributions of transmission and recovery rates. Furthermore, we study the boundedness and existence of the coexist endemic steady-state solution of this model with respect to the nonlocal dispersal rates. Particularly, it is found that, in comparison to the models with random diffusion, two strains with nonlocal dispersal are more liable to coexist, and the disease are more difficult to be controlled via reducing the movement of individuals.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104460"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial dynamics of a two-strain epidemic model with nonlocal dispersal\",\"authors\":\"Shi-Ke Hu ,&nbsp;Jiawei Huo ,&nbsp;Rong Yuan ,&nbsp;Hai-Feng Huo\",\"doi\":\"10.1016/j.nonrwa.2025.104460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article studies a nonlocal dispersal two-strain epidemic model with Neumann boundary condition in a heterogeneous environment. We define the basic reproduction number for this model and demonstrate that the disease will persist if the basic reproduction number is bigger than one, but will diminish otherwise. We also investigate the competitive exclusion of two strains in various local distributions of transmission and recovery rates. Furthermore, we study the boundedness and existence of the coexist endemic steady-state solution of this model with respect to the nonlocal dispersal rates. Particularly, it is found that, in comparison to the models with random diffusion, two strains with nonlocal dispersal are more liable to coexist, and the disease are more difficult to be controlled via reducing the movement of individuals.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104460\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001464\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001464","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了异质环境下具有诺伊曼边界条件的非局部扩散双菌株流行病模型。我们定义了该模型的基本繁殖数,并证明了当基本繁殖数大于1时,疾病将持续存在,否则将减少。我们还研究了两种菌株在不同地方传播和恢复率分布中的竞争性排斥。进一步研究了该模型关于非局部扩散率的共存地方性稳态解的有界性和存在性。特别发现,与随机扩散模型相比,非局部扩散的两种菌株更容易共存,通过减少个体的移动来控制疾病的难度更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial dynamics of a two-strain epidemic model with nonlocal dispersal
This article studies a nonlocal dispersal two-strain epidemic model with Neumann boundary condition in a heterogeneous environment. We define the basic reproduction number for this model and demonstrate that the disease will persist if the basic reproduction number is bigger than one, but will diminish otherwise. We also investigate the competitive exclusion of two strains in various local distributions of transmission and recovery rates. Furthermore, we study the boundedness and existence of the coexist endemic steady-state solution of this model with respect to the nonlocal dispersal rates. Particularly, it is found that, in comparison to the models with random diffusion, two strains with nonlocal dispersal are more liable to coexist, and the disease are more difficult to be controlled via reducing the movement of individuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信