{"title":"具有非局部扩散的两株流行病模型的空间动力学","authors":"Shi-Ke Hu , Jiawei Huo , Rong Yuan , Hai-Feng Huo","doi":"10.1016/j.nonrwa.2025.104460","DOIUrl":null,"url":null,"abstract":"<div><div>This article studies a nonlocal dispersal two-strain epidemic model with Neumann boundary condition in a heterogeneous environment. We define the basic reproduction number for this model and demonstrate that the disease will persist if the basic reproduction number is bigger than one, but will diminish otherwise. We also investigate the competitive exclusion of two strains in various local distributions of transmission and recovery rates. Furthermore, we study the boundedness and existence of the coexist endemic steady-state solution of this model with respect to the nonlocal dispersal rates. Particularly, it is found that, in comparison to the models with random diffusion, two strains with nonlocal dispersal are more liable to coexist, and the disease are more difficult to be controlled via reducing the movement of individuals.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104460"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial dynamics of a two-strain epidemic model with nonlocal dispersal\",\"authors\":\"Shi-Ke Hu , Jiawei Huo , Rong Yuan , Hai-Feng Huo\",\"doi\":\"10.1016/j.nonrwa.2025.104460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article studies a nonlocal dispersal two-strain epidemic model with Neumann boundary condition in a heterogeneous environment. We define the basic reproduction number for this model and demonstrate that the disease will persist if the basic reproduction number is bigger than one, but will diminish otherwise. We also investigate the competitive exclusion of two strains in various local distributions of transmission and recovery rates. Furthermore, we study the boundedness and existence of the coexist endemic steady-state solution of this model with respect to the nonlocal dispersal rates. Particularly, it is found that, in comparison to the models with random diffusion, two strains with nonlocal dispersal are more liable to coexist, and the disease are more difficult to be controlled via reducing the movement of individuals.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104460\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001464\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001464","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Spatial dynamics of a two-strain epidemic model with nonlocal dispersal
This article studies a nonlocal dispersal two-strain epidemic model with Neumann boundary condition in a heterogeneous environment. We define the basic reproduction number for this model and demonstrate that the disease will persist if the basic reproduction number is bigger than one, but will diminish otherwise. We also investigate the competitive exclusion of two strains in various local distributions of transmission and recovery rates. Furthermore, we study the boundedness and existence of the coexist endemic steady-state solution of this model with respect to the nonlocal dispersal rates. Particularly, it is found that, in comparison to the models with random diffusion, two strains with nonlocal dispersal are more liable to coexist, and the disease are more difficult to be controlled via reducing the movement of individuals.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.