{"title":"通过三角度粉末平均显著加速固态核磁共振模拟","authors":"Elijah Burlinson , Frédéric A. Perras","doi":"10.1016/j.jmr.2025.107966","DOIUrl":null,"url":null,"abstract":"<div><div>The anisotropic frequency shifts imparted onto the NMR resonance frequency depend on the spherical angular coordinates that describe the orientations of the NMR interaction tensors with respect to the applied magnetic field direction. Experiments performed using magic-angle spinning, however, gain a dependence on a third angle: the rotor phase <em>γ</em>. Traditionally, a carousel average is performed to integrate over <em>γ</em>, which leads to a slow convergence of intensities without contributing to the underlying powder patterns. Herein, we show an order of magnitude acceleration in computation time may be obtained by including the <em>γ</em>-averaging into the main powder average to eliminate redundant calculation of resonance frequencies.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"381 ","pages":"Article 107966"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant acceleration of solid-state NMR simulations via three-angle powder averaging\",\"authors\":\"Elijah Burlinson , Frédéric A. Perras\",\"doi\":\"10.1016/j.jmr.2025.107966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The anisotropic frequency shifts imparted onto the NMR resonance frequency depend on the spherical angular coordinates that describe the orientations of the NMR interaction tensors with respect to the applied magnetic field direction. Experiments performed using magic-angle spinning, however, gain a dependence on a third angle: the rotor phase <em>γ</em>. Traditionally, a carousel average is performed to integrate over <em>γ</em>, which leads to a slow convergence of intensities without contributing to the underlying powder patterns. Herein, we show an order of magnitude acceleration in computation time may be obtained by including the <em>γ</em>-averaging into the main powder average to eliminate redundant calculation of resonance frequencies.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"381 \",\"pages\":\"Article 107966\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780725001387\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725001387","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Significant acceleration of solid-state NMR simulations via three-angle powder averaging
The anisotropic frequency shifts imparted onto the NMR resonance frequency depend on the spherical angular coordinates that describe the orientations of the NMR interaction tensors with respect to the applied magnetic field direction. Experiments performed using magic-angle spinning, however, gain a dependence on a third angle: the rotor phase γ. Traditionally, a carousel average is performed to integrate over γ, which leads to a slow convergence of intensities without contributing to the underlying powder patterns. Herein, we show an order of magnitude acceleration in computation time may be obtained by including the γ-averaging into the main powder average to eliminate redundant calculation of resonance frequencies.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.