非倒易波传播和任意法拉第旋转的时间磁化铁氧体板

IF 4.6 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seyed Ali Yazdani, Abbas Ghasempour Ardakani
{"title":"非倒易波传播和任意法拉第旋转的时间磁化铁氧体板","authors":"Seyed Ali Yazdani,&nbsp;Abbas Ghasempour Ardakani","doi":"10.1016/j.rinp.2025.108421","DOIUrl":null,"url":null,"abstract":"<div><div>Nonreciprocity plays a crucial role in the realization of optical diodes, isolators, and circulators. Conventional nonreciprocal devices are typically fabricated using magneto-optical materials, which require strong external magnetic fields and patterned structures. Recently, nonreciprocity and Faraday polarization rotation have been demonstrated in a temporal magnetized plasma slab by abruptly changing its material parameters. In this paper, we develop a transfer matrix method to analyze the propagation of electromagnetic waves through a multilayer temporal structure composed of successive magnetized ferrite slabs. In the proposed structure, the spatially homogeneous medium abruptly transitions from free space to a magnetized ferrite and then back to free space after a defined time interval. By introducing a figure of merit, we determine the optimal values for the external magnetic field strength and the temporal thickness of the slab such that the structure functions as a 45° Faraday rotator. Furthermore, nonreciprocity in polarization conversion is demonstrated for this temporal structure. This confirms the potential of the proposed temporal structure to realize a Faraday isolator in the radio frequency region without the need for strong magnetic fields, spatial boundaries, patterned structures, or electromagnetic field confinement within an optical cavity. Additionally, we show that arbitrary polarization rotation of a linearly polarized incident wave can be achieved by appropriately selecting the external magnetic field and temporal width of the ferrite slab. Our results suggest that temporal structures based on ferrite materials hold promise for applications in wave engineering and the design of nonreciprocal devices.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"77 ","pages":"Article 108421"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal magnetized ferrite slabs for nonreciprocal wave propagation and arbitrary Faraday rotations\",\"authors\":\"Seyed Ali Yazdani,&nbsp;Abbas Ghasempour Ardakani\",\"doi\":\"10.1016/j.rinp.2025.108421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nonreciprocity plays a crucial role in the realization of optical diodes, isolators, and circulators. Conventional nonreciprocal devices are typically fabricated using magneto-optical materials, which require strong external magnetic fields and patterned structures. Recently, nonreciprocity and Faraday polarization rotation have been demonstrated in a temporal magnetized plasma slab by abruptly changing its material parameters. In this paper, we develop a transfer matrix method to analyze the propagation of electromagnetic waves through a multilayer temporal structure composed of successive magnetized ferrite slabs. In the proposed structure, the spatially homogeneous medium abruptly transitions from free space to a magnetized ferrite and then back to free space after a defined time interval. By introducing a figure of merit, we determine the optimal values for the external magnetic field strength and the temporal thickness of the slab such that the structure functions as a 45° Faraday rotator. Furthermore, nonreciprocity in polarization conversion is demonstrated for this temporal structure. This confirms the potential of the proposed temporal structure to realize a Faraday isolator in the radio frequency region without the need for strong magnetic fields, spatial boundaries, patterned structures, or electromagnetic field confinement within an optical cavity. Additionally, we show that arbitrary polarization rotation of a linearly polarized incident wave can be achieved by appropriately selecting the external magnetic field and temporal width of the ferrite slab. Our results suggest that temporal structures based on ferrite materials hold promise for applications in wave engineering and the design of nonreciprocal devices.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"77 \",\"pages\":\"Article 108421\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379725003158\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725003158","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非互易性在光二极管、隔离器和环行器的实现中起着至关重要的作用。传统的非互反器件通常是用磁光材料制造的,这需要强大的外部磁场和图案结构。最近,通过突然改变材料参数,在时间磁化等离子体板中证明了非互易性和法拉第极化旋转。本文提出了一种传递矩阵法来分析电磁波在由连续磁化铁氧体板组成的多层时间结构中的传播。在所提出的结构中,空间均匀介质突然从自由空间转变为磁化铁氧体,然后在确定的时间间隔后回到自由空间。通过引入一个优值,我们确定了外部磁场强度和板的时间厚度的最优值,使结构作为45°法拉第旋转器。进一步证明了这种时间结构在极化转换中的非互易性。这证实了所提出的时间结构在射频区域实现法拉第隔离的潜力,而不需要强磁场、空间边界、图案结构或光学腔内的电磁场限制。此外,我们还表明,通过适当选择外部磁场和铁氧体板的时间宽度,可以实现线极化入射波的任意极化旋转。我们的研究结果表明,基于铁氧体材料的时间结构在波浪工程和非互易器件的设计中具有应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal magnetized ferrite slabs for nonreciprocal wave propagation and arbitrary Faraday rotations
Nonreciprocity plays a crucial role in the realization of optical diodes, isolators, and circulators. Conventional nonreciprocal devices are typically fabricated using magneto-optical materials, which require strong external magnetic fields and patterned structures. Recently, nonreciprocity and Faraday polarization rotation have been demonstrated in a temporal magnetized plasma slab by abruptly changing its material parameters. In this paper, we develop a transfer matrix method to analyze the propagation of electromagnetic waves through a multilayer temporal structure composed of successive magnetized ferrite slabs. In the proposed structure, the spatially homogeneous medium abruptly transitions from free space to a magnetized ferrite and then back to free space after a defined time interval. By introducing a figure of merit, we determine the optimal values for the external magnetic field strength and the temporal thickness of the slab such that the structure functions as a 45° Faraday rotator. Furthermore, nonreciprocity in polarization conversion is demonstrated for this temporal structure. This confirms the potential of the proposed temporal structure to realize a Faraday isolator in the radio frequency region without the need for strong magnetic fields, spatial boundaries, patterned structures, or electromagnetic field confinement within an optical cavity. Additionally, we show that arbitrary polarization rotation of a linearly polarized incident wave can be achieved by appropriately selecting the external magnetic field and temporal width of the ferrite slab. Our results suggest that temporal structures based on ferrite materials hold promise for applications in wave engineering and the design of nonreciprocal devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信