c3n5 -cu掺杂Co3O4 @NPC纳米立方体异质结结构对抗生素磺胺甲恶唑的声光催化降解、HER电催化水裂解及细胞毒性能研究

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mojtaba Rostami , Alireza Badiei , Ghodsi Mohammadi Ziarani , Mahdi Fasihi-Ramandi , Milad Jourshabani , Byeong–Kyu Lee , Mehdi Rahimi-Nasrabadi , Farhad Ahmadi
{"title":"c3n5 -cu掺杂Co3O4 @NPC纳米立方体异质结结构对抗生素磺胺甲恶唑的声光催化降解、HER电催化水裂解及细胞毒性能研究","authors":"Mojtaba Rostami ,&nbsp;Alireza Badiei ,&nbsp;Ghodsi Mohammadi Ziarani ,&nbsp;Mahdi Fasihi-Ramandi ,&nbsp;Milad Jourshabani ,&nbsp;Byeong–Kyu Lee ,&nbsp;Mehdi Rahimi-Nasrabadi ,&nbsp;Farhad Ahmadi","doi":"10.1016/j.jiec.2025.04.031","DOIUrl":null,"url":null,"abstract":"<div><div>The Co<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) embedded in nitrogen (N)-doped porous carbon (Co<sub>3</sub>O<sub>4</sub> NPs@NPC) were dopped to copper-zeolitic imidazole frameworks (ZIF-67) and used as sonophotocatalyst and electrocatalyst. Herein, a facile in situ growth ultrasonic (US) strategy is reported for the synthesis of tightly connected C<sub>3</sub>N<sub>5</sub>-Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs @NPC nano-cubes heterojunction nanoarchitecture (NAs) by coupling C<sub>3</sub>N<sub>5</sub> with Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs@NPC nanocubes. The linear sweep voltammetry (LSV) results show that the C<sub>3</sub>N<sub>5</sub>-Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs@NPC electrocatalyst has a remarkable electrocatalytic activity towards the hydrogen evolution reaction (HER). The sono-photocatalyst activity on sulfamethoxazole (SMX) degradation is due to synergistic effects of both superoxides (O<sub>2</sub><sup>•−</sup>) and hydroxyl radicals (OH<sup>•</sup>). The results substantiate 98 % degradation of SMX within 120 min under sonophotodegradation efficiency. The reduction in electron (e<sup>-</sup>)-hole (h<sup>+</sup>) recombination is the main efficiency of sonophotodegradation of C<sub>3</sub>N<sub>5</sub>-Cu-doped Co<sub>3</sub>O<sub>4</sub>NPs@NPC. This effect was further complemented by the broadening of light absorption by C<sub>3</sub>N<sub>5</sub>, resulting in reduced degradation time. The enhanced sonophotocatalysis and electrocatalytic performance are due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that C<sub>3</sub>N<sub>5</sub>- Cu-doped Co<sub>3</sub>O<sub>4</sub>NPs@NPC based sonophotocatalyst and electrocatalyst have great potential in SMX degradation and electrochemical water splitting for hydrogen production. It also shows superior biocompatibility due to C<sub>3</sub>N<sub>5</sub>′s role in reducing cytotoxicity compared to Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs@NPC.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"151 ","pages":"Pages 591-604"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C3N5-Cu-doped Co3O4 @NPC nano-cubes heterojunction architecture for sono-photocatalytic degradation of the antibiotic sulfamethoxazole, electrocatalysis water splitting for HER, and cytotoxic performance\",\"authors\":\"Mojtaba Rostami ,&nbsp;Alireza Badiei ,&nbsp;Ghodsi Mohammadi Ziarani ,&nbsp;Mahdi Fasihi-Ramandi ,&nbsp;Milad Jourshabani ,&nbsp;Byeong–Kyu Lee ,&nbsp;Mehdi Rahimi-Nasrabadi ,&nbsp;Farhad Ahmadi\",\"doi\":\"10.1016/j.jiec.2025.04.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Co<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) embedded in nitrogen (N)-doped porous carbon (Co<sub>3</sub>O<sub>4</sub> NPs@NPC) were dopped to copper-zeolitic imidazole frameworks (ZIF-67) and used as sonophotocatalyst and electrocatalyst. Herein, a facile in situ growth ultrasonic (US) strategy is reported for the synthesis of tightly connected C<sub>3</sub>N<sub>5</sub>-Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs @NPC nano-cubes heterojunction nanoarchitecture (NAs) by coupling C<sub>3</sub>N<sub>5</sub> with Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs@NPC nanocubes. The linear sweep voltammetry (LSV) results show that the C<sub>3</sub>N<sub>5</sub>-Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs@NPC electrocatalyst has a remarkable electrocatalytic activity towards the hydrogen evolution reaction (HER). The sono-photocatalyst activity on sulfamethoxazole (SMX) degradation is due to synergistic effects of both superoxides (O<sub>2</sub><sup>•−</sup>) and hydroxyl radicals (OH<sup>•</sup>). The results substantiate 98 % degradation of SMX within 120 min under sonophotodegradation efficiency. The reduction in electron (e<sup>-</sup>)-hole (h<sup>+</sup>) recombination is the main efficiency of sonophotodegradation of C<sub>3</sub>N<sub>5</sub>-Cu-doped Co<sub>3</sub>O<sub>4</sub>NPs@NPC. This effect was further complemented by the broadening of light absorption by C<sub>3</sub>N<sub>5</sub>, resulting in reduced degradation time. The enhanced sonophotocatalysis and electrocatalytic performance are due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that C<sub>3</sub>N<sub>5</sub>- Cu-doped Co<sub>3</sub>O<sub>4</sub>NPs@NPC based sonophotocatalyst and electrocatalyst have great potential in SMX degradation and electrochemical water splitting for hydrogen production. It also shows superior biocompatibility due to C<sub>3</sub>N<sub>5</sub>′s role in reducing cytotoxicity compared to Cu-doped Co<sub>3</sub>O<sub>4</sub> NPs@NPC.</div></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"151 \",\"pages\":\"Pages 591-604\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X25002667\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X25002667","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将Co3O4纳米颗粒(NPs)包埋在氮掺杂多孔碳(Co3O4 NPs@NPC)中,并将其掺杂到铜-沸石咪唑骨架(ZIF-67)中,作为声光催化剂和电催化剂。本文报道了一种简单的原位生长超声(US)策略,通过将C3N5与cu掺杂Co3O4 NPs@NPC纳米立方体偶联,合成了紧密连接的C3N5- cu掺杂Co3O4 NPs@NPC纳米立方体异质结纳米结构(NAs)。线性扫描伏安(LSV)结果表明,c3n5 - cu掺杂的Co3O4 NPs@NPC电催化剂对析氢反应(HER)具有显著的电催化活性。超氧化物(O2•−)和羟基自由基(OH•)的协同作用是磺胺甲恶唑(SMX)降解声光催化剂活性的主要原因。结果表明,在声光降解效率下,SMX在120分钟内可降解98%。电子(e-)-空穴(h+)复合的还原是c3n5 - cu掺杂的声光降解Co3O4NPs@NPC的主要效率。C3N5对光吸收的扩大进一步补充了这一效应,从而缩短了降解时间。增强的声光催化和电催化性能是由于它们的高表面积,增强的电导率和更快的电荷转移。本研究证明了C3N5- cu掺杂Co3O4NPs@NPC基声光催化剂和电催化剂在SMX降解和电化学水裂解制氢方面具有很大的潜力。与cu掺杂的Co3O4相比,C3N5在降低细胞毒性方面的作用也显示出优越的生物相容性NPs@NPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

C3N5-Cu-doped Co3O4 @NPC nano-cubes heterojunction architecture for sono-photocatalytic degradation of the antibiotic sulfamethoxazole, electrocatalysis water splitting for HER, and cytotoxic performance

C3N5-Cu-doped Co3O4 @NPC nano-cubes heterojunction architecture for sono-photocatalytic degradation of the antibiotic sulfamethoxazole, electrocatalysis water splitting for HER, and cytotoxic performance
The Co3O4 nanoparticles (NPs) embedded in nitrogen (N)-doped porous carbon (Co3O4 NPs@NPC) were dopped to copper-zeolitic imidazole frameworks (ZIF-67) and used as sonophotocatalyst and electrocatalyst. Herein, a facile in situ growth ultrasonic (US) strategy is reported for the synthesis of tightly connected C3N5-Cu-doped Co3O4 NPs @NPC nano-cubes heterojunction nanoarchitecture (NAs) by coupling C3N5 with Cu-doped Co3O4 NPs@NPC nanocubes. The linear sweep voltammetry (LSV) results show that the C3N5-Cu-doped Co3O4 NPs@NPC electrocatalyst has a remarkable electrocatalytic activity towards the hydrogen evolution reaction (HER). The sono-photocatalyst activity on sulfamethoxazole (SMX) degradation is due to synergistic effects of both superoxides (O2•−) and hydroxyl radicals (OH). The results substantiate 98 % degradation of SMX within 120 min under sonophotodegradation efficiency. The reduction in electron (e-)-hole (h+) recombination is the main efficiency of sonophotodegradation of C3N5-Cu-doped Co3O4NPs@NPC. This effect was further complemented by the broadening of light absorption by C3N5, resulting in reduced degradation time. The enhanced sonophotocatalysis and electrocatalytic performance are due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that C3N5- Cu-doped Co3O4NPs@NPC based sonophotocatalyst and electrocatalyst have great potential in SMX degradation and electrochemical water splitting for hydrogen production. It also shows superior biocompatibility due to C3N5′s role in reducing cytotoxicity compared to Cu-doped Co3O4 NPs@NPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信