非线性抛物型拉伸表面上熵优化与黏性纳米流体的数值分析

Q1 Chemical Engineering
T. Salahuddin , Muhammad Awais , Mair Khan , Abduvali Sottarov
{"title":"非线性抛物型拉伸表面上熵优化与黏性纳米流体的数值分析","authors":"T. Salahuddin ,&nbsp;Muhammad Awais ,&nbsp;Mair Khan ,&nbsp;Abduvali Sottarov","doi":"10.1016/j.ijft.2025.101400","DOIUrl":null,"url":null,"abstract":"<div><div>The exploration of heat transmission in nanofluid flow over curved geometries is dynamic for improving the significance of advanced thermal systems used in manufacturing, energy, and biomedical applications. In this paper, we consider two dimensional in-compressible viscous flow with water based nanofluids (<span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span>-water, <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>-water) flowing over a nonlinear parabolic stretched surface past a porous medium using heat generation/absorption effect. For this objective we used <span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> as nanoparticals and water as a base fluid. Basically, in this study we compared two nanofluids <span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span>-water and <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>-water due to their high heat transfer characteristics. The governing nonlinear mathematical model of continuity, momentum and temperature equations are transformed into nonlinear ODEs by using similarity transformations. Furthermore, the transformed ODEs are than inspected numerically in MATLAB using computational procedure of Bvp4c. The combination of <span><math><mrow><mi>C</mi><mi>u</mi><mo>−</mo><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> hybrid nanoparticles, porous parabolic surface shape, and entropy generation analysis, and this combination analysis never previously reported. Moreover, the graphs are plotted against temperature and velocity fields for two distinct nanofluids (<span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span>-water, <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>-water). An entropy production analysis is also performed for an incompressible viscous nanofluid model. According to the results, adding Cu–TiO₂ nanoparticles greatly improves thermal conductivity, which raises entropy production from fluid friction while also improving heat transfer rates.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101400"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of entropy optimization and viscous nanofluid over a nonlinear parabolic stretching surface\",\"authors\":\"T. Salahuddin ,&nbsp;Muhammad Awais ,&nbsp;Mair Khan ,&nbsp;Abduvali Sottarov\",\"doi\":\"10.1016/j.ijft.2025.101400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exploration of heat transmission in nanofluid flow over curved geometries is dynamic for improving the significance of advanced thermal systems used in manufacturing, energy, and biomedical applications. In this paper, we consider two dimensional in-compressible viscous flow with water based nanofluids (<span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span>-water, <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>-water) flowing over a nonlinear parabolic stretched surface past a porous medium using heat generation/absorption effect. For this objective we used <span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> as nanoparticals and water as a base fluid. Basically, in this study we compared two nanofluids <span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span>-water and <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>-water due to their high heat transfer characteristics. The governing nonlinear mathematical model of continuity, momentum and temperature equations are transformed into nonlinear ODEs by using similarity transformations. Furthermore, the transformed ODEs are than inspected numerically in MATLAB using computational procedure of Bvp4c. The combination of <span><math><mrow><mi>C</mi><mi>u</mi><mo>−</mo><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> hybrid nanoparticles, porous parabolic surface shape, and entropy generation analysis, and this combination analysis never previously reported. Moreover, the graphs are plotted against temperature and velocity fields for two distinct nanofluids (<span><math><mrow><mi>C</mi><mi>u</mi></mrow></math></span>-water, <span><math><mrow><mi>T</mi><mi>i</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>-water). An entropy production analysis is also performed for an incompressible viscous nanofluid model. According to the results, adding Cu–TiO₂ nanoparticles greatly improves thermal conductivity, which raises entropy production from fluid friction while also improving heat transfer rates.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"30 \",\"pages\":\"Article 101400\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725003465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

探索纳米流体在弯曲几何上的热传递,对于提高先进的热系统在制造、能源和生物医学应用中的意义是动态的。在本文中,我们考虑了二维不可压缩粘性流动,水基纳米流体(cu -水,tio2 -水)在非线性抛物线拉伸表面上流过多孔介质,利用热产生/吸收效应。为此,我们使用铜和TiO2作为纳米粒子,水作为基液。基本上,在这项研究中,我们比较了两种纳米流体Cu-water和TiO2-water,因为它们具有高传热特性。利用相似变换将控制非线性数学模型的连续性、动量和温度方程转化为非线性微分方程。利用Bvp4c的计算程序,在MATLAB中对变换后的ode进行了数值检验。结合Cu−TiO2杂化纳米粒子,多孔抛物面形状,并进行熵生成分析,而这种结合分析以前从未报道过。此外,图表绘制了两种不同纳米流体(Cu-water, TiO2-water)的温度和速度场。对不可压缩黏性纳米流体模型进行了熵产分析。结果表明,Cu-TiO 2纳米颗粒的加入大大提高了导热性,从而提高了流体摩擦产生的熵产,同时也提高了传热速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of entropy optimization and viscous nanofluid over a nonlinear parabolic stretching surface
The exploration of heat transmission in nanofluid flow over curved geometries is dynamic for improving the significance of advanced thermal systems used in manufacturing, energy, and biomedical applications. In this paper, we consider two dimensional in-compressible viscous flow with water based nanofluids (Cu-water, TiO2-water) flowing over a nonlinear parabolic stretched surface past a porous medium using heat generation/absorption effect. For this objective we used Cu and TiO2 as nanoparticals and water as a base fluid. Basically, in this study we compared two nanofluids Cu-water and TiO2-water due to their high heat transfer characteristics. The governing nonlinear mathematical model of continuity, momentum and temperature equations are transformed into nonlinear ODEs by using similarity transformations. Furthermore, the transformed ODEs are than inspected numerically in MATLAB using computational procedure of Bvp4c. The combination of CuTiO2 hybrid nanoparticles, porous parabolic surface shape, and entropy generation analysis, and this combination analysis never previously reported. Moreover, the graphs are plotted against temperature and velocity fields for two distinct nanofluids (Cu-water, TiO2-water). An entropy production analysis is also performed for an incompressible viscous nanofluid model. According to the results, adding Cu–TiO₂ nanoparticles greatly improves thermal conductivity, which raises entropy production from fluid friction while also improving heat transfer rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信