Jiaqi Suo , Claudio Martani , Timothy B. Lescun , Cherri A. Krug
{"title":"一种可扩展的方法,用于优化医院手术计划,考虑效率、灵活性和改善患者预后","authors":"Jiaqi Suo , Claudio Martani , Timothy B. Lescun , Cherri A. Krug","doi":"10.1016/j.health.2025.100413","DOIUrl":null,"url":null,"abstract":"<div><div>Hospitals face challenges in efficiently adapting treatment delivery to growing and changing demands. The main challenge arises from accommodating diverse patients requiring specific surgical resources and attention. Traditional scheduling methods often fail to address the dynamic nature of these environments, which are characterized by numerous uncertainties and stakeholders’ complex and changing needs. This study presents a novel methodology designed to enhance hospital operational efficiency while considering the interests of all stakeholders, including hospital administrators, medical staff (doctors, nurses, technicians), and patients. This requires a nuanced approach to effectively handle unpredictable treatment demands, resource availability, and patient requirements. The methodology systematically progresses from defining constraints and resources to modeling uncertainties generating and evaluating optimal schedules through iterative processes. This study develops and applies a 12-step method to optimize the surgery scheduling for the farm animal section of the Purdue Veterinary Hospital over a defined period. The application shows the practical benefits of the proposed approach by modeling dynamic surgical demands and exploring various scheduling possibilities within resource constraints. The results reveal that the proposed method effectively accommodates increased operational demands while managing delays, accidents, and illness costs.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100413"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scalable methodology for optimizing hospital surgical schedules considering efficiency, flexibility, and improved patient outcomes\",\"authors\":\"Jiaqi Suo , Claudio Martani , Timothy B. Lescun , Cherri A. Krug\",\"doi\":\"10.1016/j.health.2025.100413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hospitals face challenges in efficiently adapting treatment delivery to growing and changing demands. The main challenge arises from accommodating diverse patients requiring specific surgical resources and attention. Traditional scheduling methods often fail to address the dynamic nature of these environments, which are characterized by numerous uncertainties and stakeholders’ complex and changing needs. This study presents a novel methodology designed to enhance hospital operational efficiency while considering the interests of all stakeholders, including hospital administrators, medical staff (doctors, nurses, technicians), and patients. This requires a nuanced approach to effectively handle unpredictable treatment demands, resource availability, and patient requirements. The methodology systematically progresses from defining constraints and resources to modeling uncertainties generating and evaluating optimal schedules through iterative processes. This study develops and applies a 12-step method to optimize the surgery scheduling for the farm animal section of the Purdue Veterinary Hospital over a defined period. The application shows the practical benefits of the proposed approach by modeling dynamic surgical demands and exploring various scheduling possibilities within resource constraints. The results reveal that the proposed method effectively accommodates increased operational demands while managing delays, accidents, and illness costs.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"8 \",\"pages\":\"Article 100413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A scalable methodology for optimizing hospital surgical schedules considering efficiency, flexibility, and improved patient outcomes
Hospitals face challenges in efficiently adapting treatment delivery to growing and changing demands. The main challenge arises from accommodating diverse patients requiring specific surgical resources and attention. Traditional scheduling methods often fail to address the dynamic nature of these environments, which are characterized by numerous uncertainties and stakeholders’ complex and changing needs. This study presents a novel methodology designed to enhance hospital operational efficiency while considering the interests of all stakeholders, including hospital administrators, medical staff (doctors, nurses, technicians), and patients. This requires a nuanced approach to effectively handle unpredictable treatment demands, resource availability, and patient requirements. The methodology systematically progresses from defining constraints and resources to modeling uncertainties generating and evaluating optimal schedules through iterative processes. This study develops and applies a 12-step method to optimize the surgery scheduling for the farm animal section of the Purdue Veterinary Hospital over a defined period. The application shows the practical benefits of the proposed approach by modeling dynamic surgical demands and exploring various scheduling possibilities within resource constraints. The results reveal that the proposed method effectively accommodates increased operational demands while managing delays, accidents, and illness costs.