位错驱动的多晶自发晶粒成核和微观结构演化的多物理场模型

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
I.T. Tandogan , M. Budnitzki , S. Sandfeld
{"title":"位错驱动的多晶自发晶粒成核和微观结构演化的多物理场模型","authors":"I.T. Tandogan ,&nbsp;M. Budnitzki ,&nbsp;S. Sandfeld","doi":"10.1016/j.jmps.2025.106325","DOIUrl":null,"url":null,"abstract":"<div><div>The granular microstructure of metals evolves significantly during thermomechanical processing through viscoplastic deformation and recrystallization. Microstructural features such as grain boundaries, subgrains, localized deformation bands, and non-uniform dislocation distributions critically influence grain nucleation and growth during recrystallization. Traditionally, modeling this coupled evolution involves separate, specialized frameworks for mechanical deformation and microstructural kinetics, typically used in a staggered manner. Nucleation is often introduced ad hoc, with nuclei seeded at predefined sites based on criteria like critical dislocation density, stress, or strain. This is a consequence of the inherent limitations of the staggered approach, where newly formed grain boundaries or grains have to be incorporated with additional processing.</div><div>In this work, we propose a unified, thermodynamically consistent field theory that enables spontaneous nucleation driven by stored dislocations at grain boundaries. The model integrates Cosserat crystal plasticity with the Henry–Mellenthin–Plapp orientation phase field approach, allowing the simulation of key microstructural defects, as well as curvature- and stored energy-driven grain boundary migration. The unified approach enables seamless identification of grain boundaries that emerge from deformation and nucleation. Nucleation is activated through a coupling function that links dislocation-related free energy contributions to the phase field. Dislocation recovery occurs both at newly formed nuclei and behind migrating grain boundaries.</div><div>The model’s capabilities are demonstrated using periodic bicrystal and polycrystal simulations, where mechanisms such as strain-induced boundary migration, subgrain growth, and coalescence are captured. The proposed spontaneous nucleation mechanism offers a novel addition to the capabilities of phase field models for recrystallization simulation.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106325"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-physics model for dislocation driven spontaneous grain nucleation and microstructure evolution in polycrystals\",\"authors\":\"I.T. Tandogan ,&nbsp;M. Budnitzki ,&nbsp;S. Sandfeld\",\"doi\":\"10.1016/j.jmps.2025.106325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The granular microstructure of metals evolves significantly during thermomechanical processing through viscoplastic deformation and recrystallization. Microstructural features such as grain boundaries, subgrains, localized deformation bands, and non-uniform dislocation distributions critically influence grain nucleation and growth during recrystallization. Traditionally, modeling this coupled evolution involves separate, specialized frameworks for mechanical deformation and microstructural kinetics, typically used in a staggered manner. Nucleation is often introduced ad hoc, with nuclei seeded at predefined sites based on criteria like critical dislocation density, stress, or strain. This is a consequence of the inherent limitations of the staggered approach, where newly formed grain boundaries or grains have to be incorporated with additional processing.</div><div>In this work, we propose a unified, thermodynamically consistent field theory that enables spontaneous nucleation driven by stored dislocations at grain boundaries. The model integrates Cosserat crystal plasticity with the Henry–Mellenthin–Plapp orientation phase field approach, allowing the simulation of key microstructural defects, as well as curvature- and stored energy-driven grain boundary migration. The unified approach enables seamless identification of grain boundaries that emerge from deformation and nucleation. Nucleation is activated through a coupling function that links dislocation-related free energy contributions to the phase field. Dislocation recovery occurs both at newly formed nuclei and behind migrating grain boundaries.</div><div>The model’s capabilities are demonstrated using periodic bicrystal and polycrystal simulations, where mechanisms such as strain-induced boundary migration, subgrain growth, and coalescence are captured. The proposed spontaneous nucleation mechanism offers a novel addition to the capabilities of phase field models for recrystallization simulation.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"206 \",\"pages\":\"Article 106325\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625003011\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003011","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在热机械加工过程中,金属的颗粒组织通过粘塑性变形和再结晶发生了显著的变化。在再结晶过程中,晶界、亚晶、局部变形带和不均匀位错分布等微观组织特征对晶粒的形核和生长有重要影响。传统上,这种耦合演化的建模涉及单独的、专门的机械变形和微观结构动力学框架,通常以交错的方式使用。成核通常是特别引入的,根据诸如临界位错密度、应力或应变等标准,在预定义的位置播种核。这是交错方法固有局限性的结果,其中新形成的晶界或晶粒必须与额外的处理相结合。在这项工作中,我们提出了一个统一的,热力学一致的场理论,使晶界储存的位错驱动的自发成核。该模型将Cosserat晶体塑性与henry - mellenlin - plapp取向相场方法相结合,可以模拟关键的微观结构缺陷,以及曲率和存储能量驱动的晶界迁移。统一的方法可以无缝识别变形和成核产生的晶界。成核是通过一个耦合函数激活的,该耦合函数将位错相关的自由能贡献到相场中。位错恢复发生在新形成的晶核和迁移晶界后面。该模型的功能通过周期性双晶和多晶模拟得到验证,其中捕获了应变诱导的边界迁移、亚晶生长和聚结等机制。提出的自发成核机制为相场模型的再结晶模拟能力提供了新的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-physics model for dislocation driven spontaneous grain nucleation and microstructure evolution in polycrystals
The granular microstructure of metals evolves significantly during thermomechanical processing through viscoplastic deformation and recrystallization. Microstructural features such as grain boundaries, subgrains, localized deformation bands, and non-uniform dislocation distributions critically influence grain nucleation and growth during recrystallization. Traditionally, modeling this coupled evolution involves separate, specialized frameworks for mechanical deformation and microstructural kinetics, typically used in a staggered manner. Nucleation is often introduced ad hoc, with nuclei seeded at predefined sites based on criteria like critical dislocation density, stress, or strain. This is a consequence of the inherent limitations of the staggered approach, where newly formed grain boundaries or grains have to be incorporated with additional processing.
In this work, we propose a unified, thermodynamically consistent field theory that enables spontaneous nucleation driven by stored dislocations at grain boundaries. The model integrates Cosserat crystal plasticity with the Henry–Mellenthin–Plapp orientation phase field approach, allowing the simulation of key microstructural defects, as well as curvature- and stored energy-driven grain boundary migration. The unified approach enables seamless identification of grain boundaries that emerge from deformation and nucleation. Nucleation is activated through a coupling function that links dislocation-related free energy contributions to the phase field. Dislocation recovery occurs both at newly formed nuclei and behind migrating grain boundaries.
The model’s capabilities are demonstrated using periodic bicrystal and polycrystal simulations, where mechanisms such as strain-induced boundary migration, subgrain growth, and coalescence are captured. The proposed spontaneous nucleation mechanism offers a novel addition to the capabilities of phase field models for recrystallization simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信