Zi Li , Zhuohan Cao , Qian Liu , Wenliang Chen , Zuhao Zhang , Richard F. Webster , Yu Wang , Jiawen Xu , Xiebin Wang , Michael Ferry , Jamie J. Kruzic , Xiaopeng Li
{"title":"激光粉末床熔合制备的ta改性Fe-Mn-Si形状记忆合金的室温形状恢复性能显著增强","authors":"Zi Li , Zhuohan Cao , Qian Liu , Wenliang Chen , Zuhao Zhang , Richard F. Webster , Yu Wang , Jiawen Xu , Xiebin Wang , Michael Ferry , Jamie J. Kruzic , Xiaopeng Li","doi":"10.1016/j.addma.2025.104956","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, fully dense and crack-free Fe-30Mn-6Si-xTa (x = 0, 0.5, 1.0, 2.0 wt%) shape memory alloys (SMAs) were manufactured by laser powder bed fusion (LPBF). The effects of tantalum (Ta) addition and post-heat treatment (600 °C for 30 min) on microstructure and shape memory properties were systematically investigated. It was found that Ta effectively leads to the grain refinement in the Fe-based SMAs, which is mainly attributed to solute redistribution and the formation of Ta precipitate during rapid solidification. Post-heat treatment further improved room-temperature (RT) shape recovery properties of the Fe-30Mn-6Si-0.5Ta (wt%) alloy, achieving a recovery strain of ∼2.84 % and a shape recovery ratio of ∼71 %, which is 70 % higher than previously reported LPBF-fabricated Fe-based SMAs (i.e., ∼1.64 % recovery strain and ∼41 % shape recovery ratio). This enhancement is attributed to the increased stacking fault (SF) density facilitated by Ta precipitates and the positive influence of heat treatment, both of which promote the phase transformation from γ-austenite to ε-martensite. The research demonstrates that the Fe-based SMAs with enhanced shape memory properties can be fabricated by the LPBF technique, which provides new insights and practical guidance for designing high-performance SMAs via additive manufacturing techniques.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"111 ","pages":"Article 104956"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant enhancement of room-temperature shape recovery properties of Ta-modified Fe-Mn-Si shape memory alloys fabricated by laser powder bed fusion\",\"authors\":\"Zi Li , Zhuohan Cao , Qian Liu , Wenliang Chen , Zuhao Zhang , Richard F. Webster , Yu Wang , Jiawen Xu , Xiebin Wang , Michael Ferry , Jamie J. Kruzic , Xiaopeng Li\",\"doi\":\"10.1016/j.addma.2025.104956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, fully dense and crack-free Fe-30Mn-6Si-xTa (x = 0, 0.5, 1.0, 2.0 wt%) shape memory alloys (SMAs) were manufactured by laser powder bed fusion (LPBF). The effects of tantalum (Ta) addition and post-heat treatment (600 °C for 30 min) on microstructure and shape memory properties were systematically investigated. It was found that Ta effectively leads to the grain refinement in the Fe-based SMAs, which is mainly attributed to solute redistribution and the formation of Ta precipitate during rapid solidification. Post-heat treatment further improved room-temperature (RT) shape recovery properties of the Fe-30Mn-6Si-0.5Ta (wt%) alloy, achieving a recovery strain of ∼2.84 % and a shape recovery ratio of ∼71 %, which is 70 % higher than previously reported LPBF-fabricated Fe-based SMAs (i.e., ∼1.64 % recovery strain and ∼41 % shape recovery ratio). This enhancement is attributed to the increased stacking fault (SF) density facilitated by Ta precipitates and the positive influence of heat treatment, both of which promote the phase transformation from γ-austenite to ε-martensite. The research demonstrates that the Fe-based SMAs with enhanced shape memory properties can be fabricated by the LPBF technique, which provides new insights and practical guidance for designing high-performance SMAs via additive manufacturing techniques.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"111 \",\"pages\":\"Article 104956\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425003203\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425003203","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Significant enhancement of room-temperature shape recovery properties of Ta-modified Fe-Mn-Si shape memory alloys fabricated by laser powder bed fusion
In this study, fully dense and crack-free Fe-30Mn-6Si-xTa (x = 0, 0.5, 1.0, 2.0 wt%) shape memory alloys (SMAs) were manufactured by laser powder bed fusion (LPBF). The effects of tantalum (Ta) addition and post-heat treatment (600 °C for 30 min) on microstructure and shape memory properties were systematically investigated. It was found that Ta effectively leads to the grain refinement in the Fe-based SMAs, which is mainly attributed to solute redistribution and the formation of Ta precipitate during rapid solidification. Post-heat treatment further improved room-temperature (RT) shape recovery properties of the Fe-30Mn-6Si-0.5Ta (wt%) alloy, achieving a recovery strain of ∼2.84 % and a shape recovery ratio of ∼71 %, which is 70 % higher than previously reported LPBF-fabricated Fe-based SMAs (i.e., ∼1.64 % recovery strain and ∼41 % shape recovery ratio). This enhancement is attributed to the increased stacking fault (SF) density facilitated by Ta precipitates and the positive influence of heat treatment, both of which promote the phase transformation from γ-austenite to ε-martensite. The research demonstrates that the Fe-based SMAs with enhanced shape memory properties can be fabricated by the LPBF technique, which provides new insights and practical guidance for designing high-performance SMAs via additive manufacturing techniques.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.