用于PEM高效水电解的钛多孔传输层的增材制造

IF 7.9 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Gerrit Ter Haar, Craig McGregor
{"title":"用于PEM高效水电解的钛多孔传输层的增材制造","authors":"Gerrit Ter Haar,&nbsp;Craig McGregor","doi":"10.1016/j.mtsust.2025.101219","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates laser powder bed fusion as a novel manufacturing method for porous transport layers in proton exchange membrane water electrolysers, addressing the limitations of traditional sintering methods in controlling structural morphology and pore distribution. The research combines comprehensive structural characterisation using micro-computed tomography, mercury intrusion porosimetry, and surface profilometry with <em>in-situ</em> performance evaluation. The additive manufactured porous transport layers demonstrated distinct structural advantages, including an anisotropic pore structure with aligned micro-channels (pore entry diameter of 10.91 μm), controlled porosity (43–49 %), and optimized surface morphology. These characteristics resulted in superior electrochemical performance, with a 21 % reduction in ohmic resistance primarily attributed to enhanced interfacial contact between the PTL and catalyst layer. This study demonstrates that laser powder bed fusion technology can not only match but exceed the performance of traditional manufacturing methods for proton exchange membrane water electrolyser components while offering greater design flexibility for future optimisation of water electrolysis cells.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"32 ","pages":"Article 101219"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive manufacturing of titanium porous transport layers for efficient PEM water electrolysis\",\"authors\":\"Gerrit Ter Haar,&nbsp;Craig McGregor\",\"doi\":\"10.1016/j.mtsust.2025.101219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates laser powder bed fusion as a novel manufacturing method for porous transport layers in proton exchange membrane water electrolysers, addressing the limitations of traditional sintering methods in controlling structural morphology and pore distribution. The research combines comprehensive structural characterisation using micro-computed tomography, mercury intrusion porosimetry, and surface profilometry with <em>in-situ</em> performance evaluation. The additive manufactured porous transport layers demonstrated distinct structural advantages, including an anisotropic pore structure with aligned micro-channels (pore entry diameter of 10.91 μm), controlled porosity (43–49 %), and optimized surface morphology. These characteristics resulted in superior electrochemical performance, with a 21 % reduction in ohmic resistance primarily attributed to enhanced interfacial contact between the PTL and catalyst layer. This study demonstrates that laser powder bed fusion technology can not only match but exceed the performance of traditional manufacturing methods for proton exchange membrane water electrolyser components while offering greater design flexibility for future optimisation of water electrolysis cells.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"32 \",\"pages\":\"Article 101219\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725001484\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725001484","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了激光粉末床熔融作为质子交换膜水电解槽多孔传输层的一种新型制造方法,解决了传统烧结方法在控制结构形态和孔分布方面的局限性。该研究结合了显微计算机断层扫描、汞侵入孔隙度测量和表面轮廓测量以及现场性能评估的综合结构表征。添加剂制备的多孔输运层具有明显的结构优势,包括具有排列微通道的各向异性孔隙结构(孔径为10.91 μm)、可控孔隙率(43 - 49%)和优化的表面形貌。这些特性导致了优异的电化学性能,主要由于PTL和催化剂层之间的界面接触增强,欧姆电阻降低了21%。该研究表明,激光粉末床融合技术不仅可以匹配甚至超过传统的质子交换膜电解元件制造方法的性能,同时为未来的电解电池优化提供更大的设计灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive manufacturing of titanium porous transport layers for efficient PEM water electrolysis
This study investigates laser powder bed fusion as a novel manufacturing method for porous transport layers in proton exchange membrane water electrolysers, addressing the limitations of traditional sintering methods in controlling structural morphology and pore distribution. The research combines comprehensive structural characterisation using micro-computed tomography, mercury intrusion porosimetry, and surface profilometry with in-situ performance evaluation. The additive manufactured porous transport layers demonstrated distinct structural advantages, including an anisotropic pore structure with aligned micro-channels (pore entry diameter of 10.91 μm), controlled porosity (43–49 %), and optimized surface morphology. These characteristics resulted in superior electrochemical performance, with a 21 % reduction in ohmic resistance primarily attributed to enhanced interfacial contact between the PTL and catalyst layer. This study demonstrates that laser powder bed fusion technology can not only match but exceed the performance of traditional manufacturing methods for proton exchange membrane water electrolyser components while offering greater design flexibility for future optimisation of water electrolysis cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信