基于INLA-SPDE和环境协变量的刚果民主共和国东部土壤有机碳储量贝叶斯空间预测

Q2 Environmental Science
Alain Matazi Kangela , Bitaisha Nakishuka Shukuru , Serge Mugisho Mukotanyi , Gerard Imani , Yannick Mugumaarhama , Daniel Muhindo Iragi , Dieudonné Shamamba Bahati , Janvier Bigabwa Bashagaluke , Wivine Munyahali
{"title":"基于INLA-SPDE和环境协变量的刚果民主共和国东部土壤有机碳储量贝叶斯空间预测","authors":"Alain Matazi Kangela ,&nbsp;Bitaisha Nakishuka Shukuru ,&nbsp;Serge Mugisho Mukotanyi ,&nbsp;Gerard Imani ,&nbsp;Yannick Mugumaarhama ,&nbsp;Daniel Muhindo Iragi ,&nbsp;Dieudonné Shamamba Bahati ,&nbsp;Janvier Bigabwa Bashagaluke ,&nbsp;Wivine Munyahali","doi":"10.1016/j.envc.2025.101303","DOIUrl":null,"url":null,"abstract":"<div><div>Soil organic carbon (SOC) plays a critical role in climate mitigation and agricultural sustainability, yet its spatial distribution in the eastern Democratic Republic of the Congo (DRC) remains poorly quantified. This study employs a Bayesian spatial modeling framework, Integrated Nested Laplace Approximation with Stochastic Partial Differential Equations (INLA-SPDE), to predict SOC stocks across Kalehe and Kabare territories, integrating 177 field observations with environmental covariates (soil properties, topography, and vegetation indices). The INLA-SPDE approach was chosen for its ability to handle sparse datasets effectively while providing robust uncertainty quantification, a key advantage for regions with limited observational data. Key drivers of SOC variability included soil pH, sand,clay content, bulk density, elevation, and vegetation indices (Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation index (SAVI)). The INLA-SPDE model outperformed the global SoilGrids250m dataset, achieving a significantly higher correlation with observed data (<span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>49</mn><mspace></mspace><mtext>vs</mtext><mspace></mspace><mn>0</mn><mo>.</mo><mn>045</mn><mo>,</mo><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span>). Higher SOC stocks were predicted in forested southern regions (<span><math><mrow><mn>105</mn><mo>.</mo><mn>11</mn><mo>±</mo><mn>11</mn><mo>.</mo><mn>36</mn></mrow></math></span> MgC ha<sup>−1</sup>), while data-sparse northern areas exhibited greater uncertainty, with a posterior standard deviation of up to <span><math><mrow><mn>32</mn><mo>.</mo><mn>68</mn><mo>±</mo><mn>5</mn><mo>.</mo><mn>46</mn></mrow></math></span> MgC ha<sup>−1</sup>, (vs. the spatial field’s global standard deviation averaged to 12.74 MgC ha<sup>−1</sup> at the 97.5% quantile). Posterior distributions revealed significant spatial heterogeneity, linked to land use and observational density. Our results underscore the importance of localized SOC mapping for informed land management and climate resilience strategies in tropical Africa, demonstrating the INLA-SPDE framework’s superior predictive accuracy and interpretability in data-scarce environments.</div></div>","PeriodicalId":34794,"journal":{"name":"Environmental Challenges","volume":"21 ","pages":"Article 101303"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian spatial prediction of soil organic carbon stocks in eastern DRC using INLA-SPDE and environmental covariates\",\"authors\":\"Alain Matazi Kangela ,&nbsp;Bitaisha Nakishuka Shukuru ,&nbsp;Serge Mugisho Mukotanyi ,&nbsp;Gerard Imani ,&nbsp;Yannick Mugumaarhama ,&nbsp;Daniel Muhindo Iragi ,&nbsp;Dieudonné Shamamba Bahati ,&nbsp;Janvier Bigabwa Bashagaluke ,&nbsp;Wivine Munyahali\",\"doi\":\"10.1016/j.envc.2025.101303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil organic carbon (SOC) plays a critical role in climate mitigation and agricultural sustainability, yet its spatial distribution in the eastern Democratic Republic of the Congo (DRC) remains poorly quantified. This study employs a Bayesian spatial modeling framework, Integrated Nested Laplace Approximation with Stochastic Partial Differential Equations (INLA-SPDE), to predict SOC stocks across Kalehe and Kabare territories, integrating 177 field observations with environmental covariates (soil properties, topography, and vegetation indices). The INLA-SPDE approach was chosen for its ability to handle sparse datasets effectively while providing robust uncertainty quantification, a key advantage for regions with limited observational data. Key drivers of SOC variability included soil pH, sand,clay content, bulk density, elevation, and vegetation indices (Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation index (SAVI)). The INLA-SPDE model outperformed the global SoilGrids250m dataset, achieving a significantly higher correlation with observed data (<span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>49</mn><mspace></mspace><mtext>vs</mtext><mspace></mspace><mn>0</mn><mo>.</mo><mn>045</mn><mo>,</mo><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span>). Higher SOC stocks were predicted in forested southern regions (<span><math><mrow><mn>105</mn><mo>.</mo><mn>11</mn><mo>±</mo><mn>11</mn><mo>.</mo><mn>36</mn></mrow></math></span> MgC ha<sup>−1</sup>), while data-sparse northern areas exhibited greater uncertainty, with a posterior standard deviation of up to <span><math><mrow><mn>32</mn><mo>.</mo><mn>68</mn><mo>±</mo><mn>5</mn><mo>.</mo><mn>46</mn></mrow></math></span> MgC ha<sup>−1</sup>, (vs. the spatial field’s global standard deviation averaged to 12.74 MgC ha<sup>−1</sup> at the 97.5% quantile). Posterior distributions revealed significant spatial heterogeneity, linked to land use and observational density. Our results underscore the importance of localized SOC mapping for informed land management and climate resilience strategies in tropical Africa, demonstrating the INLA-SPDE framework’s superior predictive accuracy and interpretability in data-scarce environments.</div></div>\",\"PeriodicalId\":34794,\"journal\":{\"name\":\"Environmental Challenges\",\"volume\":\"21 \",\"pages\":\"Article 101303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Challenges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667010025002227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Challenges","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667010025002227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

土壤有机碳(SOC)在减缓气候变化和农业可持续发展中发挥着关键作用,但其在刚果民主共和国东部的空间分布仍然缺乏量化。本研究采用贝叶斯空间建模框架——随机偏微分方程集成嵌套拉普拉斯近似(INLA-SPDE),将177个野外观测数据与环境协变量(土壤性质、地形和植被指数)相结合,预测Kalehe和Kabare地区的有机碳储量。选择INLA-SPDE方法是因为它能够有效地处理稀疏数据集,同时提供鲁棒的不确定性量化,这对于观测数据有限的地区来说是一个关键优势。土壤有机碳变异的主要驱动因素包括土壤pH、沙粒、粘土含量、容重、海拔和植被指数(归一化植被指数(NDVI)、土壤调整植被指数(SAVI))。INLA-SPDE模型优于全球SoilGrids250m数据集,与观测数据的相关性显著提高(r=0.49vs0.045,p<0.001)。南方森林地区碳储量较高(105.11±11.36 MgC ha - 1),而数据稀疏的北方地区则表现出更大的不确定性,后验标准差高达32.68±5.46 MgC ha - 1,而在97.5%分位数上,空间场的全球标准差平均为12.74 MgC ha - 1。后验分布显示出显著的空间异质性,与土地利用和观测密度有关。我们的研究结果强调了本地化有机碳制图对热带非洲土地管理和气候恢复策略的重要性,证明了INLA-SPDE框架在数据稀缺环境下具有卓越的预测准确性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian spatial prediction of soil organic carbon stocks in eastern DRC using INLA-SPDE and environmental covariates
Soil organic carbon (SOC) plays a critical role in climate mitigation and agricultural sustainability, yet its spatial distribution in the eastern Democratic Republic of the Congo (DRC) remains poorly quantified. This study employs a Bayesian spatial modeling framework, Integrated Nested Laplace Approximation with Stochastic Partial Differential Equations (INLA-SPDE), to predict SOC stocks across Kalehe and Kabare territories, integrating 177 field observations with environmental covariates (soil properties, topography, and vegetation indices). The INLA-SPDE approach was chosen for its ability to handle sparse datasets effectively while providing robust uncertainty quantification, a key advantage for regions with limited observational data. Key drivers of SOC variability included soil pH, sand,clay content, bulk density, elevation, and vegetation indices (Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation index (SAVI)). The INLA-SPDE model outperformed the global SoilGrids250m dataset, achieving a significantly higher correlation with observed data (r=0.49vs0.045,p<0.001). Higher SOC stocks were predicted in forested southern regions (105.11±11.36 MgC ha−1), while data-sparse northern areas exhibited greater uncertainty, with a posterior standard deviation of up to 32.68±5.46 MgC ha−1, (vs. the spatial field’s global standard deviation averaged to 12.74 MgC ha−1 at the 97.5% quantile). Posterior distributions revealed significant spatial heterogeneity, linked to land use and observational density. Our results underscore the importance of localized SOC mapping for informed land management and climate resilience strategies in tropical Africa, demonstrating the INLA-SPDE framework’s superior predictive accuracy and interpretability in data-scarce environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Challenges
Environmental Challenges Environmental Science-Environmental Engineering
CiteScore
8.00
自引率
0.00%
发文量
249
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信