新型Ba2MnS3/rGO纳米材料在增强光催化、抗菌、A549细胞系和分子对接应用中的先进功能

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
G. Gnanamoorthy , Zhang Xiangyam , Subramaniyan Magesh , Yuxi Guo , S. Munusamy , R. Kaviya , Gracy Jenifer Sahayanathan , P. Chermakani , Virendra Kumar Yadav , Jie Jin , Ziyang Lu
{"title":"新型Ba2MnS3/rGO纳米材料在增强光催化、抗菌、A549细胞系和分子对接应用中的先进功能","authors":"G. Gnanamoorthy ,&nbsp;Zhang Xiangyam ,&nbsp;Subramaniyan Magesh ,&nbsp;Yuxi Guo ,&nbsp;S. Munusamy ,&nbsp;R. Kaviya ,&nbsp;Gracy Jenifer Sahayanathan ,&nbsp;P. Chermakani ,&nbsp;Virendra Kumar Yadav ,&nbsp;Jie Jin ,&nbsp;Ziyang Lu","doi":"10.1016/j.rineng.2025.107018","DOIUrl":null,"url":null,"abstract":"<div><div>The present research presents the production of innovative Ba<sub>2</sub>MnS<sub>3</sub> and Ba<sub>2</sub>MnS<sub>3</sub>/reduced graphene oxide (rGO) nanocomposites by a green hydrothermal technique utilizing lemon extract as a reducing agent. The developed materials went through comprehensive characterisation through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, and thermogravimetric analysis (TGA). These analyses confirmed their high phase purity, successful formation of ternary sulfides, and crystallite sizes of 58 nm for Ba<sub>2</sub>MnS<sub>3</sub> and 65 nm for Ba<sub>2</sub>MnS<sub>3</sub>/rGO. The Ba<sub>2</sub>MnS<sub>3</sub>/rGO nanocomposite showed a reduced bandgap (1.5 eV), enhanced thermal stability, and morphological transformation to sheet-like structures. Photocatalytic studies under visible light exhibited significantly improved degradation efficiencies for methyl orange (90.8 % in 70 min) and malachite green (97.7 % in 30 min) compared to pure Ba<sub>2</sub>MnS<sub>3</sub>. Antibacterial assays showed strong inhibition against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, supported by favorable minimum inhibitory concentration (MIC) values. Cytotoxicity evaluation against A549 lung carcinoma cells showed an IC₅₀ of 100 µg/mL, indicating notable anticancer potential. Molecular docking and molecular dynamics simulations revealed stable and high-affinity binding of Ba<sub>2</sub>MnS<sub>3</sub>/rGO with KRAS^G12D (-10.0 kcal/mol) and KRAS^G12C (-9.6 kcal/mol) oncogenic proteins, suggesting inhibitory potential. These multifunctional nanocomposites hold promise for integrated photocatalytic, antibacterial, and anticancer applications.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107018"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced function of Novel Ba2MnS3/rGO nanomaterials for enhanced Photocatalytic, Antibacterial, A549 cell line and Molecular docking applications\",\"authors\":\"G. Gnanamoorthy ,&nbsp;Zhang Xiangyam ,&nbsp;Subramaniyan Magesh ,&nbsp;Yuxi Guo ,&nbsp;S. Munusamy ,&nbsp;R. Kaviya ,&nbsp;Gracy Jenifer Sahayanathan ,&nbsp;P. Chermakani ,&nbsp;Virendra Kumar Yadav ,&nbsp;Jie Jin ,&nbsp;Ziyang Lu\",\"doi\":\"10.1016/j.rineng.2025.107018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present research presents the production of innovative Ba<sub>2</sub>MnS<sub>3</sub> and Ba<sub>2</sub>MnS<sub>3</sub>/reduced graphene oxide (rGO) nanocomposites by a green hydrothermal technique utilizing lemon extract as a reducing agent. The developed materials went through comprehensive characterisation through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, and thermogravimetric analysis (TGA). These analyses confirmed their high phase purity, successful formation of ternary sulfides, and crystallite sizes of 58 nm for Ba<sub>2</sub>MnS<sub>3</sub> and 65 nm for Ba<sub>2</sub>MnS<sub>3</sub>/rGO. The Ba<sub>2</sub>MnS<sub>3</sub>/rGO nanocomposite showed a reduced bandgap (1.5 eV), enhanced thermal stability, and morphological transformation to sheet-like structures. Photocatalytic studies under visible light exhibited significantly improved degradation efficiencies for methyl orange (90.8 % in 70 min) and malachite green (97.7 % in 30 min) compared to pure Ba<sub>2</sub>MnS<sub>3</sub>. Antibacterial assays showed strong inhibition against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, supported by favorable minimum inhibitory concentration (MIC) values. Cytotoxicity evaluation against A549 lung carcinoma cells showed an IC₅₀ of 100 µg/mL, indicating notable anticancer potential. Molecular docking and molecular dynamics simulations revealed stable and high-affinity binding of Ba<sub>2</sub>MnS<sub>3</sub>/rGO with KRAS^G12D (-10.0 kcal/mol) and KRAS^G12C (-9.6 kcal/mol) oncogenic proteins, suggesting inhibitory potential. These multifunctional nanocomposites hold promise for integrated photocatalytic, antibacterial, and anticancer applications.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107018\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025030749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025030749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以柠檬提取物为还原剂,采用绿色水热技术制备了Ba2MnS3和Ba2MnS3/还原性氧化石墨烯纳米复合材料。通过x射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、拉曼光谱、紫外-可见漫反射光谱(DRS)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、能量色散x射线光谱(EDX)、x射线光电子能谱(XPS)、布鲁诺尔-埃米特-泰勒(BET)分析和热重分析(TGA)对所制备的材料进行了全面表征。这些分析证实了它们的高相纯度,成功形成了三重硫化物,Ba2MnS3和Ba2MnS3/rGO的晶粒尺寸分别为58 nm和65 nm。Ba2MnS3/rGO纳米复合材料的带隙减小(1.5 eV),热稳定性增强,形貌转变为片状结构。可见光下的光催化研究表明,与纯Ba2MnS3相比,甲基橙(70 min内90.8%)和孔雀石绿(30 min内97.7%)的降解效率显著提高。对金黄色葡萄球菌和大肠杆菌均有较强的抑菌活性,且具有较好的最小抑菌浓度(MIC)。对A549肺癌细胞的细胞毒性评估显示IC₅0为100µg/mL,表明显着的抗癌潜力。分子对接和分子动力学模拟显示,Ba2MnS3/rGO与KRAS^G12D (-10.0 kcal/mol)和KRAS^G12C (-9.6 kcal/mol)的致癌蛋白结合稳定且高亲和力,提示具有抑制潜力。这些多功能纳米复合材料具有光催化、抗菌和抗癌的综合应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced function of Novel Ba2MnS3/rGO nanomaterials for enhanced Photocatalytic, Antibacterial, A549 cell line and Molecular docking applications
The present research presents the production of innovative Ba2MnS3 and Ba2MnS3/reduced graphene oxide (rGO) nanocomposites by a green hydrothermal technique utilizing lemon extract as a reducing agent. The developed materials went through comprehensive characterisation through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, and thermogravimetric analysis (TGA). These analyses confirmed their high phase purity, successful formation of ternary sulfides, and crystallite sizes of 58 nm for Ba2MnS3 and 65 nm for Ba2MnS3/rGO. The Ba2MnS3/rGO nanocomposite showed a reduced bandgap (1.5 eV), enhanced thermal stability, and morphological transformation to sheet-like structures. Photocatalytic studies under visible light exhibited significantly improved degradation efficiencies for methyl orange (90.8 % in 70 min) and malachite green (97.7 % in 30 min) compared to pure Ba2MnS3. Antibacterial assays showed strong inhibition against Staphylococcus aureus and Escherichia coli, supported by favorable minimum inhibitory concentration (MIC) values. Cytotoxicity evaluation against A549 lung carcinoma cells showed an IC₅₀ of 100 µg/mL, indicating notable anticancer potential. Molecular docking and molecular dynamics simulations revealed stable and high-affinity binding of Ba2MnS3/rGO with KRAS^G12D (-10.0 kcal/mol) and KRAS^G12C (-9.6 kcal/mol) oncogenic proteins, suggesting inhibitory potential. These multifunctional nanocomposites hold promise for integrated photocatalytic, antibacterial, and anticancer applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信