Shuaijie Liu , Tianyi Zhang , Bowen Tan , Jinglun Guo , Wei Zhong , Nannan Chen , Han Zou , Le Cao , Xuqing Liu
{"title":"双网芳纶纳米纤维/纤维素纳米纤维/MXene气凝胶轻量化,脉冲电磁干扰屏蔽","authors":"Shuaijie Liu , Tianyi Zhang , Bowen Tan , Jinglun Guo , Wei Zhong , Nannan Chen , Han Zou , Le Cao , Xuqing Liu","doi":"10.1016/j.compscitech.2025.111373","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving effective shielding against high-power electromagnetic pulses (HEMPs) without compromising mass is critical for aerospace, defence and wearable systems, yet remains elusive for most lightweight materials. In this work, we present a multifunctional composite aerogel constructed from aramid nanofibers (ANFs), cellulose nanofibers (CNF), and MXene nanosheets. A dual-network architecture is formed through hydrogen bonding and electrostatic interactions, yielding a highly porous structure with integrated strength, flexibility, and electrical functionality. The aerogel exhibits an exceptional compressive stress of 0.48 MPa at 60 % strain, broadband shielding effectiveness exceeding 90 dB in the X-band (with >90 % absorption contribution), and thermal stability up to 150 °C. Conventional shielding metrics based on continuous-wave (CW) frequency-domain evaluations often fail to capture material behavior under such scenarios. To evaluate the aerogel's transient protection capabilities, we further employed time-domain shielding effectiveness (TDSE) simulations based on finite-difference time-domain (FDTD) modeling. The results confirm strong suppression of electric field peaks, derivatives, and energy flux under EMP-like illumination, demonstrating the aerogel's viability in pulse-rich environments such as aerospace and defense systems. This study offers a versatile and scalable platform for engineering aerogels with high-performance electromagnetic resilience, bridging the gap between material design and real-world operational requirements.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"272 ","pages":"Article 111373"},"PeriodicalIF":9.8000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-network aramid nanofibers/cellulose Nanofibers/MXene aerogels for lightweight, pulse electromagnetic interference shielding\",\"authors\":\"Shuaijie Liu , Tianyi Zhang , Bowen Tan , Jinglun Guo , Wei Zhong , Nannan Chen , Han Zou , Le Cao , Xuqing Liu\",\"doi\":\"10.1016/j.compscitech.2025.111373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving effective shielding against high-power electromagnetic pulses (HEMPs) without compromising mass is critical for aerospace, defence and wearable systems, yet remains elusive for most lightweight materials. In this work, we present a multifunctional composite aerogel constructed from aramid nanofibers (ANFs), cellulose nanofibers (CNF), and MXene nanosheets. A dual-network architecture is formed through hydrogen bonding and electrostatic interactions, yielding a highly porous structure with integrated strength, flexibility, and electrical functionality. The aerogel exhibits an exceptional compressive stress of 0.48 MPa at 60 % strain, broadband shielding effectiveness exceeding 90 dB in the X-band (with >90 % absorption contribution), and thermal stability up to 150 °C. Conventional shielding metrics based on continuous-wave (CW) frequency-domain evaluations often fail to capture material behavior under such scenarios. To evaluate the aerogel's transient protection capabilities, we further employed time-domain shielding effectiveness (TDSE) simulations based on finite-difference time-domain (FDTD) modeling. The results confirm strong suppression of electric field peaks, derivatives, and energy flux under EMP-like illumination, demonstrating the aerogel's viability in pulse-rich environments such as aerospace and defense systems. This study offers a versatile and scalable platform for engineering aerogels with high-performance electromagnetic resilience, bridging the gap between material design and real-world operational requirements.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"272 \",\"pages\":\"Article 111373\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353825003410\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825003410","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Achieving effective shielding against high-power electromagnetic pulses (HEMPs) without compromising mass is critical for aerospace, defence and wearable systems, yet remains elusive for most lightweight materials. In this work, we present a multifunctional composite aerogel constructed from aramid nanofibers (ANFs), cellulose nanofibers (CNF), and MXene nanosheets. A dual-network architecture is formed through hydrogen bonding and electrostatic interactions, yielding a highly porous structure with integrated strength, flexibility, and electrical functionality. The aerogel exhibits an exceptional compressive stress of 0.48 MPa at 60 % strain, broadband shielding effectiveness exceeding 90 dB in the X-band (with >90 % absorption contribution), and thermal stability up to 150 °C. Conventional shielding metrics based on continuous-wave (CW) frequency-domain evaluations often fail to capture material behavior under such scenarios. To evaluate the aerogel's transient protection capabilities, we further employed time-domain shielding effectiveness (TDSE) simulations based on finite-difference time-domain (FDTD) modeling. The results confirm strong suppression of electric field peaks, derivatives, and energy flux under EMP-like illumination, demonstrating the aerogel's viability in pulse-rich environments such as aerospace and defense systems. This study offers a versatile and scalable platform for engineering aerogels with high-performance electromagnetic resilience, bridging the gap between material design and real-world operational requirements.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.