基于sca的sifrcs瞬态热烧蚀和力学损伤多尺度并行模型研究

IF 9.8 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Shuo Cao , Yiqi Mao , Wenyang Liu , Shujuan Hou
{"title":"基于sca的sifrcs瞬态热烧蚀和力学损伤多尺度并行模型研究","authors":"Shuo Cao ,&nbsp;Yiqi Mao ,&nbsp;Wenyang Liu ,&nbsp;Shujuan Hou","doi":"10.1016/j.compscitech.2025.111368","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate numerical simulation of the ablation process in silica fiber-reinforced phenolic resin composites (SiFPRCs) is critical for advanced thermal protection applications. However, conventional dual-scale finite element (FE<sup>2</sup>) methods incur prohibitive computational costs when capturing the strongly nonlinear responses induced by multiple dissipative mechanisms during thermochemical ablation. To address this issue, we propose a dual-scale framework (FEM-SCA) that integrates the finite element method (FEM) with self-consistent clustering analysis (SCA). At the macroscopic level, FEM captures the overall thermo-mechanical response, while nested mesoscale representative volume elements (RVEs) are solved using the SCA to capture dissipative processes, including heat radiation, phenolic resin pyrolysis, thermal blocking, silica fiber phase transitions, carbon-silicon reaction, and mechanical degradation. A staggered incremental scheme enables efficient transient coupling across scales. Validation against FE<sup>2</sup> benchmarks demonstrates that FEM-SCA reproduces thermal conduction and pyrolysis behavior with &lt;5 % error, while reducing computational cost by over two orders of magnitude. The proposed framework offers a computationally efficient and physically grounded approach for simulating ablation in woven composites.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"272 ","pages":"Article 111368"},"PeriodicalIF":9.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SCA-based concurrent multiscale thermo-mechanical model for transient thermal ablative and mechanical damage properties of SiFPRCs\",\"authors\":\"Shuo Cao ,&nbsp;Yiqi Mao ,&nbsp;Wenyang Liu ,&nbsp;Shujuan Hou\",\"doi\":\"10.1016/j.compscitech.2025.111368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate numerical simulation of the ablation process in silica fiber-reinforced phenolic resin composites (SiFPRCs) is critical for advanced thermal protection applications. However, conventional dual-scale finite element (FE<sup>2</sup>) methods incur prohibitive computational costs when capturing the strongly nonlinear responses induced by multiple dissipative mechanisms during thermochemical ablation. To address this issue, we propose a dual-scale framework (FEM-SCA) that integrates the finite element method (FEM) with self-consistent clustering analysis (SCA). At the macroscopic level, FEM captures the overall thermo-mechanical response, while nested mesoscale representative volume elements (RVEs) are solved using the SCA to capture dissipative processes, including heat radiation, phenolic resin pyrolysis, thermal blocking, silica fiber phase transitions, carbon-silicon reaction, and mechanical degradation. A staggered incremental scheme enables efficient transient coupling across scales. Validation against FE<sup>2</sup> benchmarks demonstrates that FEM-SCA reproduces thermal conduction and pyrolysis behavior with &lt;5 % error, while reducing computational cost by over two orders of magnitude. The proposed framework offers a computationally efficient and physically grounded approach for simulating ablation in woven composites.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"272 \",\"pages\":\"Article 111368\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353825003367\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825003367","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

硅纤维增强酚醛树脂复合材料(sifprc)烧蚀过程的精确数值模拟对于先进的热防护应用至关重要。然而,传统的双尺度有限元(FE2)方法在捕获热化学烧蚀过程中由多种耗散机制引起的强烈非线性响应时,会产生令人望而却步的计算成本。为了解决这一问题,我们提出了一种双尺度框架(FEM-SCA),该框架将有限元方法(FEM)与自洽聚类分析(SCA)相结合。在宏观层面上,FEM捕获了整体的热-力学响应,而嵌套的中尺度代表性体积元(RVEs)则使用SCA求解,以捕获耗散过程,包括热辐射、酚醛树脂热解、热阻塞、硅纤维相变、碳-硅反应和机械降解。交错增量方案使跨尺度的有效瞬态耦合成为可能。对FE2基准的验证表明,FEM-SCA再现热传导和热解行为的误差为<; 5%,同时将计算成本降低了两个数量级以上。所提出的框架提供了一种计算高效和物理接地的方法来模拟编织复合材料的烧蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A SCA-based concurrent multiscale thermo-mechanical model for transient thermal ablative and mechanical damage properties of SiFPRCs

A SCA-based concurrent multiscale thermo-mechanical model for transient thermal ablative and mechanical damage properties of SiFPRCs
Accurate numerical simulation of the ablation process in silica fiber-reinforced phenolic resin composites (SiFPRCs) is critical for advanced thermal protection applications. However, conventional dual-scale finite element (FE2) methods incur prohibitive computational costs when capturing the strongly nonlinear responses induced by multiple dissipative mechanisms during thermochemical ablation. To address this issue, we propose a dual-scale framework (FEM-SCA) that integrates the finite element method (FEM) with self-consistent clustering analysis (SCA). At the macroscopic level, FEM captures the overall thermo-mechanical response, while nested mesoscale representative volume elements (RVEs) are solved using the SCA to capture dissipative processes, including heat radiation, phenolic resin pyrolysis, thermal blocking, silica fiber phase transitions, carbon-silicon reaction, and mechanical degradation. A staggered incremental scheme enables efficient transient coupling across scales. Validation against FE2 benchmarks demonstrates that FEM-SCA reproduces thermal conduction and pyrolysis behavior with <5 % error, while reducing computational cost by over two orders of magnitude. The proposed framework offers a computationally efficient and physically grounded approach for simulating ablation in woven composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信