{"title":"水处理中压泵的同步传输控制:基于多级级联h桥逆变器的解决方案","authors":"M.L. Nguyen, Duy Anh Ta","doi":"10.1016/j.rineng.2025.107006","DOIUrl":null,"url":null,"abstract":"<div><div>In large-scale pump stations, medium-voltage three-phase induction motors are commonly used to drive pumps. Conventional soft starters enable smooth motor startup and facilitate grid connection to reduce energy losses; however, they lack speed control capabilities, which are essential for regulating flow or pressure. On the other hand, traditional inverters provide effective speed regulation but do not support seamless motor transfer to the grid. This research proposes a novel synchronous-transfer control scheme as an extended function of variable frequency drives. By applying advanced control strategies, the inverter's output voltage is precisely synchronized with the grid in terms of magnitude, frequency, and phase angle. And hence allowing the motor to be smoothly transferred to the grid when needed. The effectiveness of the proposed solution is demonstrated through comprehensive numerical simulations utilizing multilevel cascaded H-bridge inverters as the primary drive system.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107006"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronous transfer control of medium voltage pump in water treatment: A multilevel cascaded H-bridge inverter-based solution\",\"authors\":\"M.L. Nguyen, Duy Anh Ta\",\"doi\":\"10.1016/j.rineng.2025.107006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In large-scale pump stations, medium-voltage three-phase induction motors are commonly used to drive pumps. Conventional soft starters enable smooth motor startup and facilitate grid connection to reduce energy losses; however, they lack speed control capabilities, which are essential for regulating flow or pressure. On the other hand, traditional inverters provide effective speed regulation but do not support seamless motor transfer to the grid. This research proposes a novel synchronous-transfer control scheme as an extended function of variable frequency drives. By applying advanced control strategies, the inverter's output voltage is precisely synchronized with the grid in terms of magnitude, frequency, and phase angle. And hence allowing the motor to be smoothly transferred to the grid when needed. The effectiveness of the proposed solution is demonstrated through comprehensive numerical simulations utilizing multilevel cascaded H-bridge inverters as the primary drive system.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107006\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025030622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025030622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Synchronous transfer control of medium voltage pump in water treatment: A multilevel cascaded H-bridge inverter-based solution
In large-scale pump stations, medium-voltage three-phase induction motors are commonly used to drive pumps. Conventional soft starters enable smooth motor startup and facilitate grid connection to reduce energy losses; however, they lack speed control capabilities, which are essential for regulating flow or pressure. On the other hand, traditional inverters provide effective speed regulation but do not support seamless motor transfer to the grid. This research proposes a novel synchronous-transfer control scheme as an extended function of variable frequency drives. By applying advanced control strategies, the inverter's output voltage is precisely synchronized with the grid in terms of magnitude, frequency, and phase angle. And hence allowing the motor to be smoothly transferred to the grid when needed. The effectiveness of the proposed solution is demonstrated through comprehensive numerical simulations utilizing multilevel cascaded H-bridge inverters as the primary drive system.