核酸纳米材料:调节先天免疫激活的机制和策略

IF 10.9 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kexuan Zou , Yan Liu , Linlin Tang , Yuqi Wang , Jianming Wang , Jie Song
{"title":"核酸纳米材料:调节先天免疫激活的机制和策略","authors":"Kexuan Zou ,&nbsp;Yan Liu ,&nbsp;Linlin Tang ,&nbsp;Yuqi Wang ,&nbsp;Jianming Wang ,&nbsp;Jie Song","doi":"10.1016/j.nantod.2025.102897","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleic acid nanomaterials (NA-NMat) are rapidly emerging as pivotal tools in precision medicine and therapeutic interventions, with their immunomodulatory roles attracting frontier research focuses. As key triggers of innate immunity, nucleic acids orchestrate complex immune regulations through their distinct structural motifs and sequence-dependent molecular recognition. Elucidating the molecular mechanisms by which nucleic acids activate the innate immune system not only helps to reveal their central roles in immune regulation, but also lays the theoretical foundation for developing innovative nucleic acid-based therapeutic strategies. In this review, we systematically summarize current knowledge regarding the activation pathways, sequence specificity, and conformational effects of nucleic acids including the primary, secondary, tertiary, and artificially designed structures of DNA and RNA in innate immunity. We further review recent advancements in utilizing NA-NMat integrated with oligonucleotides, proteins, and small molecules to co-regulate innate immunity. To conclude, we critically evaluate current challenges in the field and propose future directions for the development of nucleic acid nanotechnology (NA-NTech) in immunotherapy, offering insights and references for designing next-generation immune-regulatory nanoplatforms.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"66 ","pages":"Article 102897"},"PeriodicalIF":10.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleic acid nanomaterials: Mechanisms and strategies for regulating innate immune activation\",\"authors\":\"Kexuan Zou ,&nbsp;Yan Liu ,&nbsp;Linlin Tang ,&nbsp;Yuqi Wang ,&nbsp;Jianming Wang ,&nbsp;Jie Song\",\"doi\":\"10.1016/j.nantod.2025.102897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nucleic acid nanomaterials (NA-NMat) are rapidly emerging as pivotal tools in precision medicine and therapeutic interventions, with their immunomodulatory roles attracting frontier research focuses. As key triggers of innate immunity, nucleic acids orchestrate complex immune regulations through their distinct structural motifs and sequence-dependent molecular recognition. Elucidating the molecular mechanisms by which nucleic acids activate the innate immune system not only helps to reveal their central roles in immune regulation, but also lays the theoretical foundation for developing innovative nucleic acid-based therapeutic strategies. In this review, we systematically summarize current knowledge regarding the activation pathways, sequence specificity, and conformational effects of nucleic acids including the primary, secondary, tertiary, and artificially designed structures of DNA and RNA in innate immunity. We further review recent advancements in utilizing NA-NMat integrated with oligonucleotides, proteins, and small molecules to co-regulate innate immunity. To conclude, we critically evaluate current challenges in the field and propose future directions for the development of nucleic acid nanotechnology (NA-NTech) in immunotherapy, offering insights and references for designing next-generation immune-regulatory nanoplatforms.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"66 \",\"pages\":\"Article 102897\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013225002695\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002695","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

核酸纳米材料(NA-NMat)正迅速成为精准医学和治疗干预的关键工具,其免疫调节作用吸引了前沿研究热点。作为先天免疫的关键触发器,核酸通过其独特的结构基序和序列依赖的分子识别来协调复杂的免疫调节。阐明核酸激活先天免疫系统的分子机制不仅有助于揭示其在免疫调节中的核心作用,而且为开发基于核酸的创新治疗策略奠定理论基础。在这篇综述中,我们系统地总结了目前关于核酸的激活途径、序列特异性和构象效应的知识,包括先天免疫中DNA和RNA的一级、二级、三级和人工设计的结构。我们进一步回顾了利用NA-NMat与寡核苷酸、蛋白质和小分子结合来共同调节先天免疫的最新进展。总之,我们批判性地评估了当前该领域的挑战,并提出了核酸纳米技术(NA-NTech)在免疫治疗中的未来发展方向,为设计下一代免疫调节纳米平台提供见解和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nucleic acid nanomaterials: Mechanisms and strategies for regulating innate immune activation
Nucleic acid nanomaterials (NA-NMat) are rapidly emerging as pivotal tools in precision medicine and therapeutic interventions, with their immunomodulatory roles attracting frontier research focuses. As key triggers of innate immunity, nucleic acids orchestrate complex immune regulations through their distinct structural motifs and sequence-dependent molecular recognition. Elucidating the molecular mechanisms by which nucleic acids activate the innate immune system not only helps to reveal their central roles in immune regulation, but also lays the theoretical foundation for developing innovative nucleic acid-based therapeutic strategies. In this review, we systematically summarize current knowledge regarding the activation pathways, sequence specificity, and conformational effects of nucleic acids including the primary, secondary, tertiary, and artificially designed structures of DNA and RNA in innate immunity. We further review recent advancements in utilizing NA-NMat integrated with oligonucleotides, proteins, and small molecules to co-regulate innate immunity. To conclude, we critically evaluate current challenges in the field and propose future directions for the development of nucleic acid nanotechnology (NA-NTech) in immunotherapy, offering insights and references for designing next-generation immune-regulatory nanoplatforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信