热辐射和磁流体力学对垂直板上混合纳米流体流动的影响

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Manimegalai C., Peri K. Kameswaran
{"title":"热辐射和磁流体力学对垂直板上混合纳米流体流动的影响","authors":"Manimegalai C.,&nbsp;Peri K. Kameswaran","doi":"10.1016/j.rineng.2025.106969","DOIUrl":null,"url":null,"abstract":"<div><div>Recent technological developments have concentrated on the application of nanotechnology and solar-based heat radiation. Solar energy is the primary source of heat and is acquired by absorbing sunlight. Therefore, the main concern of this study is to explore the combined effect of buoyancy-driven hybrid nanofluid flow and the impact of the magnetic field and radiation on the non-Darcy porous medium. The purpose of hybrid nanofluids used in this study is to raise the heat transfer rate, reduce radiation loss, and produce high thermal efficiency in solar collectors. The main features of this research are the improved thermal conductivity of the working fluid in the solar collector. The <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> are the hybrid nanofluids utilized in this investigation to improve the solar collector's performance. The Mathematical model described in this study consists of the Navier-Stokes equations. The magnetic field and thermal radiation are included in the momentum and energy equations. The resultant governing equations are solved numerically by MATLAB. The numerical results are validated with the existing results in the literature for a particular case, and they are in good agreement. The graphical illustration showed that with an increase in nanoparticle volume fraction, the temperature profile increases more in <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> than <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>; due to this, the heat transfer rate is low in solar collectors. The developed data-driven model resulted in that for 10% nanoparticle volume fraction <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> achieving 72.55% and 68.71% heat transfer rate. This study finds that as the magnetic parameter increases, there is a reduction in fluid velocity and an increase in temperature. As the Hartman number increases to the range 2, the heat transfer rate rises to 0.02% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 0.0285% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>. Additionally, increasing the values of radiation leads to improved temperature. It is further noticed that with the radiation and mixed convection parameters varied from 1 to 10, the heat transfer rate significantly increases from 1.7% to 5.86% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 2.43% to 8.37% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>, respectively. The findings indicate that a rise in nanoparticle volume fraction increases the heat transfer rate. The use of hybrid nanofluids significantly reduces radiation loss, which implies enhancing the overall efficiency of the energy conversion systems in solar collectors.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 106969"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of thermal radiation and magnetohydrodynamics on hybrid nanofluid flow over a vertical plate\",\"authors\":\"Manimegalai C.,&nbsp;Peri K. Kameswaran\",\"doi\":\"10.1016/j.rineng.2025.106969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent technological developments have concentrated on the application of nanotechnology and solar-based heat radiation. Solar energy is the primary source of heat and is acquired by absorbing sunlight. Therefore, the main concern of this study is to explore the combined effect of buoyancy-driven hybrid nanofluid flow and the impact of the magnetic field and radiation on the non-Darcy porous medium. The purpose of hybrid nanofluids used in this study is to raise the heat transfer rate, reduce radiation loss, and produce high thermal efficiency in solar collectors. The main features of this research are the improved thermal conductivity of the working fluid in the solar collector. The <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> are the hybrid nanofluids utilized in this investigation to improve the solar collector's performance. The Mathematical model described in this study consists of the Navier-Stokes equations. The magnetic field and thermal radiation are included in the momentum and energy equations. The resultant governing equations are solved numerically by MATLAB. The numerical results are validated with the existing results in the literature for a particular case, and they are in good agreement. The graphical illustration showed that with an increase in nanoparticle volume fraction, the temperature profile increases more in <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> than <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>; due to this, the heat transfer rate is low in solar collectors. The developed data-driven model resulted in that for 10% nanoparticle volume fraction <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> achieving 72.55% and 68.71% heat transfer rate. This study finds that as the magnetic parameter increases, there is a reduction in fluid velocity and an increase in temperature. As the Hartman number increases to the range 2, the heat transfer rate rises to 0.02% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 0.0285% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>. Additionally, increasing the values of radiation leads to improved temperature. It is further noticed that with the radiation and mixed convection parameters varied from 1 to 10, the heat transfer rate significantly increases from 1.7% to 5.86% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 2.43% to 8.37% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>, respectively. The findings indicate that a rise in nanoparticle volume fraction increases the heat transfer rate. The use of hybrid nanofluids significantly reduces radiation loss, which implies enhancing the overall efficiency of the energy conversion systems in solar collectors.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 106969\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025030257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025030257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近的技术发展集中在纳米技术和太阳能热辐射的应用上。太阳能是热量的主要来源,是通过吸收阳光获得的。因此,本研究的主要关注点是探索浮力驱动的混合纳米流体流动与磁场和辐射对非达西多孔介质的影响的联合效应。采用混合纳米流体的目的是提高集热器的传热速率,减少辐射损失,提高集热器的热效率。本研究的主要特点是提高了太阳能集热器中工作流体的导热性。Al2O3−CuO/H2O和Ag−Cu/H2O是本研究中用于提高太阳能集热器性能的混合纳米流体。本文所描述的数学模型由Navier-Stokes方程组成。动量和能量方程中包含了磁场和热辐射。用MATLAB对控制方程进行了数值求解。数值计算结果与文献中已有的算例结果吻合较好。结果表明,随着纳米颗粒体积分数的增加,Ag−Cu/H2O中的温度曲线比Al2O3−CuO/H2O中的温度曲线增加得更多;因此,太阳能集热器的传热率很低。建立的数据驱动模型表明,当纳米颗粒体积分数为10%时,Ag−Cu/H2O和Al2O3−CuO/H2O的换热率分别为72.55%和68.71%。研究发现,随着磁参数的增大,流体速度减小,温度升高。当Hartman数增加到2时,Ag−Cu/H2O和Al2O3−CuO/H2O的换热率分别上升到0.02%和0.0285%。此外,增加辐射值会导致温度的提高。当辐射和混合对流参数为1 ~ 10时,Ag−Cu/H2O和Al2O3−CuO/H2O的换热率分别从1.7%和2.43%显著增加到5.86%和8.37%。研究结果表明,纳米颗粒体积分数的增加增加了传热速率。混合纳米流体的使用显著降低了辐射损失,这意味着提高了太阳能集热器中能量转换系统的整体效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of thermal radiation and magnetohydrodynamics on hybrid nanofluid flow over a vertical plate
Recent technological developments have concentrated on the application of nanotechnology and solar-based heat radiation. Solar energy is the primary source of heat and is acquired by absorbing sunlight. Therefore, the main concern of this study is to explore the combined effect of buoyancy-driven hybrid nanofluid flow and the impact of the magnetic field and radiation on the non-Darcy porous medium. The purpose of hybrid nanofluids used in this study is to raise the heat transfer rate, reduce radiation loss, and produce high thermal efficiency in solar collectors. The main features of this research are the improved thermal conductivity of the working fluid in the solar collector. The Al2O3CuO/H2O and AgCu/H2O are the hybrid nanofluids utilized in this investigation to improve the solar collector's performance. The Mathematical model described in this study consists of the Navier-Stokes equations. The magnetic field and thermal radiation are included in the momentum and energy equations. The resultant governing equations are solved numerically by MATLAB. The numerical results are validated with the existing results in the literature for a particular case, and they are in good agreement. The graphical illustration showed that with an increase in nanoparticle volume fraction, the temperature profile increases more in AgCu/H2O than Al2O3CuO/H2O; due to this, the heat transfer rate is low in solar collectors. The developed data-driven model resulted in that for 10% nanoparticle volume fraction AgCu/H2O and Al2O3CuO/H2O achieving 72.55% and 68.71% heat transfer rate. This study finds that as the magnetic parameter increases, there is a reduction in fluid velocity and an increase in temperature. As the Hartman number increases to the range 2, the heat transfer rate rises to 0.02% for AgCu/H2O and 0.0285% for Al2O3CuO/H2O. Additionally, increasing the values of radiation leads to improved temperature. It is further noticed that with the radiation and mixed convection parameters varied from 1 to 10, the heat transfer rate significantly increases from 1.7% to 5.86% for AgCu/H2O and 2.43% to 8.37% for Al2O3CuO/H2O, respectively. The findings indicate that a rise in nanoparticle volume fraction increases the heat transfer rate. The use of hybrid nanofluids significantly reduces radiation loss, which implies enhancing the overall efficiency of the energy conversion systems in solar collectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信