{"title":"热辐射和磁流体力学对垂直板上混合纳米流体流动的影响","authors":"Manimegalai C., Peri K. Kameswaran","doi":"10.1016/j.rineng.2025.106969","DOIUrl":null,"url":null,"abstract":"<div><div>Recent technological developments have concentrated on the application of nanotechnology and solar-based heat radiation. Solar energy is the primary source of heat and is acquired by absorbing sunlight. Therefore, the main concern of this study is to explore the combined effect of buoyancy-driven hybrid nanofluid flow and the impact of the magnetic field and radiation on the non-Darcy porous medium. The purpose of hybrid nanofluids used in this study is to raise the heat transfer rate, reduce radiation loss, and produce high thermal efficiency in solar collectors. The main features of this research are the improved thermal conductivity of the working fluid in the solar collector. The <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> are the hybrid nanofluids utilized in this investigation to improve the solar collector's performance. The Mathematical model described in this study consists of the Navier-Stokes equations. The magnetic field and thermal radiation are included in the momentum and energy equations. The resultant governing equations are solved numerically by MATLAB. The numerical results are validated with the existing results in the literature for a particular case, and they are in good agreement. The graphical illustration showed that with an increase in nanoparticle volume fraction, the temperature profile increases more in <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> than <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>; due to this, the heat transfer rate is low in solar collectors. The developed data-driven model resulted in that for 10% nanoparticle volume fraction <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> achieving 72.55% and 68.71% heat transfer rate. This study finds that as the magnetic parameter increases, there is a reduction in fluid velocity and an increase in temperature. As the Hartman number increases to the range 2, the heat transfer rate rises to 0.02% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 0.0285% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>. Additionally, increasing the values of radiation leads to improved temperature. It is further noticed that with the radiation and mixed convection parameters varied from 1 to 10, the heat transfer rate significantly increases from 1.7% to 5.86% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 2.43% to 8.37% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>, respectively. The findings indicate that a rise in nanoparticle volume fraction increases the heat transfer rate. The use of hybrid nanofluids significantly reduces radiation loss, which implies enhancing the overall efficiency of the energy conversion systems in solar collectors.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 106969"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of thermal radiation and magnetohydrodynamics on hybrid nanofluid flow over a vertical plate\",\"authors\":\"Manimegalai C., Peri K. Kameswaran\",\"doi\":\"10.1016/j.rineng.2025.106969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent technological developments have concentrated on the application of nanotechnology and solar-based heat radiation. Solar energy is the primary source of heat and is acquired by absorbing sunlight. Therefore, the main concern of this study is to explore the combined effect of buoyancy-driven hybrid nanofluid flow and the impact of the magnetic field and radiation on the non-Darcy porous medium. The purpose of hybrid nanofluids used in this study is to raise the heat transfer rate, reduce radiation loss, and produce high thermal efficiency in solar collectors. The main features of this research are the improved thermal conductivity of the working fluid in the solar collector. The <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> are the hybrid nanofluids utilized in this investigation to improve the solar collector's performance. The Mathematical model described in this study consists of the Navier-Stokes equations. The magnetic field and thermal radiation are included in the momentum and energy equations. The resultant governing equations are solved numerically by MATLAB. The numerical results are validated with the existing results in the literature for a particular case, and they are in good agreement. The graphical illustration showed that with an increase in nanoparticle volume fraction, the temperature profile increases more in <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> than <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>; due to this, the heat transfer rate is low in solar collectors. The developed data-driven model resulted in that for 10% nanoparticle volume fraction <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> achieving 72.55% and 68.71% heat transfer rate. This study finds that as the magnetic parameter increases, there is a reduction in fluid velocity and an increase in temperature. As the Hartman number increases to the range 2, the heat transfer rate rises to 0.02% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 0.0285% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>. Additionally, increasing the values of radiation leads to improved temperature. It is further noticed that with the radiation and mixed convection parameters varied from 1 to 10, the heat transfer rate significantly increases from 1.7% to 5.86% for <span><math><mi>A</mi><mi>g</mi><mo>−</mo><mi>C</mi><mi>u</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span> and 2.43% to 8.37% for <span><math><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi><mi>O</mi><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math></span>, respectively. The findings indicate that a rise in nanoparticle volume fraction increases the heat transfer rate. The use of hybrid nanofluids significantly reduces radiation loss, which implies enhancing the overall efficiency of the energy conversion systems in solar collectors.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 106969\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025030257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025030257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of thermal radiation and magnetohydrodynamics on hybrid nanofluid flow over a vertical plate
Recent technological developments have concentrated on the application of nanotechnology and solar-based heat radiation. Solar energy is the primary source of heat and is acquired by absorbing sunlight. Therefore, the main concern of this study is to explore the combined effect of buoyancy-driven hybrid nanofluid flow and the impact of the magnetic field and radiation on the non-Darcy porous medium. The purpose of hybrid nanofluids used in this study is to raise the heat transfer rate, reduce radiation loss, and produce high thermal efficiency in solar collectors. The main features of this research are the improved thermal conductivity of the working fluid in the solar collector. The and are the hybrid nanofluids utilized in this investigation to improve the solar collector's performance. The Mathematical model described in this study consists of the Navier-Stokes equations. The magnetic field and thermal radiation are included in the momentum and energy equations. The resultant governing equations are solved numerically by MATLAB. The numerical results are validated with the existing results in the literature for a particular case, and they are in good agreement. The graphical illustration showed that with an increase in nanoparticle volume fraction, the temperature profile increases more in than ; due to this, the heat transfer rate is low in solar collectors. The developed data-driven model resulted in that for 10% nanoparticle volume fraction and achieving 72.55% and 68.71% heat transfer rate. This study finds that as the magnetic parameter increases, there is a reduction in fluid velocity and an increase in temperature. As the Hartman number increases to the range 2, the heat transfer rate rises to 0.02% for and 0.0285% for . Additionally, increasing the values of radiation leads to improved temperature. It is further noticed that with the radiation and mixed convection parameters varied from 1 to 10, the heat transfer rate significantly increases from 1.7% to 5.86% for and 2.43% to 8.37% for , respectively. The findings indicate that a rise in nanoparticle volume fraction increases the heat transfer rate. The use of hybrid nanofluids significantly reduces radiation loss, which implies enhancing the overall efficiency of the energy conversion systems in solar collectors.