采用分子动力学模拟方法研究ClO2气体原子比对流感病毒消毒过程的影响

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Narinderjit Singh Sawaran Singh , Ibrahim Saeed Gataa , Imad S. aboud , Sarhang Hayyas Mohammed , Soheil Salahshour , S. Mohammad Sajadi , Hani Sahramaneshi
{"title":"采用分子动力学模拟方法研究ClO2气体原子比对流感病毒消毒过程的影响","authors":"Narinderjit Singh Sawaran Singh ,&nbsp;Ibrahim Saeed Gataa ,&nbsp;Imad S. aboud ,&nbsp;Sarhang Hayyas Mohammed ,&nbsp;Soheil Salahshour ,&nbsp;S. Mohammad Sajadi ,&nbsp;Hani Sahramaneshi","doi":"10.1016/j.rineng.2025.107175","DOIUrl":null,"url":null,"abstract":"<div><div>Influenza virus transmission remains a critical public health concern, necessitating effective disinfection strategies to control outbreaks. However, the molecular mechanisms by which varying atomic ratios of chlorine dioxide (ClO₂) gas affect viral destabilization and inactivation are not fully understood. To address this knowledge gap, this study used molecular dynamics simulations using the LAMMPS software to investigate interactions between ClO₂ gas and the influenza virus at different atomic ratios. Increasing the ClO₂ concentration from 15 % to 50 % significantly raised virus-gas interaction energy from 25,377.83 kcal/mol to 83,430.95 kcal/mol and virus-virus interaction energy from 523,570.84 kcal/mol to 558,130.12 kcal/mol. Concurrently, mean square displacement decreased, indicating reduced viral atom mobility, and the radius of gyration contracted from 68.55 Å to 65.58 Å, reflecting structural collapse. These molecular-level findings demonstrate that higher ClO₂ atomic ratios strengthened the interactions that led to viral destabilization and accelerated structural breakdown, providing quantitative insights to optimize ClO₂ dosing protocols for effective disinfection in healthcare and public environments. Moreover, the results can inform the development of advanced antiviral surface treatments and air purification technologies.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107175"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effect of the atomic ratio of ClO2 Gas on the disinfection process of the influenza virus using molecular dynamics simulation\",\"authors\":\"Narinderjit Singh Sawaran Singh ,&nbsp;Ibrahim Saeed Gataa ,&nbsp;Imad S. aboud ,&nbsp;Sarhang Hayyas Mohammed ,&nbsp;Soheil Salahshour ,&nbsp;S. Mohammad Sajadi ,&nbsp;Hani Sahramaneshi\",\"doi\":\"10.1016/j.rineng.2025.107175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Influenza virus transmission remains a critical public health concern, necessitating effective disinfection strategies to control outbreaks. However, the molecular mechanisms by which varying atomic ratios of chlorine dioxide (ClO₂) gas affect viral destabilization and inactivation are not fully understood. To address this knowledge gap, this study used molecular dynamics simulations using the LAMMPS software to investigate interactions between ClO₂ gas and the influenza virus at different atomic ratios. Increasing the ClO₂ concentration from 15 % to 50 % significantly raised virus-gas interaction energy from 25,377.83 kcal/mol to 83,430.95 kcal/mol and virus-virus interaction energy from 523,570.84 kcal/mol to 558,130.12 kcal/mol. Concurrently, mean square displacement decreased, indicating reduced viral atom mobility, and the radius of gyration contracted from 68.55 Å to 65.58 Å, reflecting structural collapse. These molecular-level findings demonstrate that higher ClO₂ atomic ratios strengthened the interactions that led to viral destabilization and accelerated structural breakdown, providing quantitative insights to optimize ClO₂ dosing protocols for effective disinfection in healthcare and public environments. Moreover, the results can inform the development of advanced antiviral surface treatments and air purification technologies.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107175\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259012302503230X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259012302503230X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

流感病毒传播仍然是一个严重的公共卫生问题,需要采取有效的消毒策略来控制疫情。然而,不同的二氧化氯(clo2)气体原子比影响病毒失稳和失活的分子机制尚不完全清楚。为了解决这一知识差距,本研究使用LAMMPS软件进行分子动力学模拟,以不同原子比研究ClO₂气体与流感病毒之间的相互作用。将ClO₂浓度从15%提高到50%,病毒-气体相互作用能从25,377.83 kcal/mol显著提高到83,430.95 kcal/mol,病毒-病毒相互作用能从523,570.84 kcal/mol显著提高到558,130.12 kcal/mol。同时,均方位移减小,表明病毒原子迁移率降低,旋转半径从68.55 Å收缩到65.58 Å,反映结构崩溃。这些分子水平的研究结果表明,较高的ClO₂原子比加强了导致病毒不稳定和加速结构破坏的相互作用,为优化ClO₂剂量方案提供了定量见解,以便在医疗保健和公共环境中进行有效消毒。此外,研究结果可以为先进的抗病毒表面处理和空气净化技术的发展提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the effect of the atomic ratio of ClO2 Gas on the disinfection process of the influenza virus using molecular dynamics simulation
Influenza virus transmission remains a critical public health concern, necessitating effective disinfection strategies to control outbreaks. However, the molecular mechanisms by which varying atomic ratios of chlorine dioxide (ClO₂) gas affect viral destabilization and inactivation are not fully understood. To address this knowledge gap, this study used molecular dynamics simulations using the LAMMPS software to investigate interactions between ClO₂ gas and the influenza virus at different atomic ratios. Increasing the ClO₂ concentration from 15 % to 50 % significantly raised virus-gas interaction energy from 25,377.83 kcal/mol to 83,430.95 kcal/mol and virus-virus interaction energy from 523,570.84 kcal/mol to 558,130.12 kcal/mol. Concurrently, mean square displacement decreased, indicating reduced viral atom mobility, and the radius of gyration contracted from 68.55 Å to 65.58 Å, reflecting structural collapse. These molecular-level findings demonstrate that higher ClO₂ atomic ratios strengthened the interactions that led to viral destabilization and accelerated structural breakdown, providing quantitative insights to optimize ClO₂ dosing protocols for effective disinfection in healthcare and public environments. Moreover, the results can inform the development of advanced antiviral surface treatments and air purification technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信