先进生物分子传感:DGOTFT中介电调制双层电极的模拟与灵敏度分析

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Chandaboina Pavan Kumar, Manish Kumar Singh
{"title":"先进生物分子传感:DGOTFT中介电调制双层电极的模拟与灵敏度分析","authors":"Chandaboina Pavan Kumar,&nbsp;Manish Kumar Singh","doi":"10.1016/j.rineng.2025.107039","DOIUrl":null,"url":null,"abstract":"<div><div>A dielectric-modulated bilayer electrode double-gate organic thin-film transistor (DMBE-DGOTFT), employing Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) as the active layer, is designed for selective and label-free biomolecule detection. The DMBE-DGOTFT biosensor leverages a biocavity integrated within the gate dielectric region, where the variations in dielectric constant and biomolecular charge density significantly influence the device electrical response. The key parameters, including Drain current variation, DNTT thickness, electric field distribution, charge polarity, and electrostatic potential—are systematically analyzed under diverse biosensing conditions using SILVACO ATLAS TCAD simulations. The DMBE-DGOTFT biosensor exhibits a maximum sensitivity of <span><math><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span> for a charged biomolecule (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>12</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>) at a dielectric constant of 12, it demonstrates superior performance compared to conventional dielectric-modulated double-gate biosensors, with a sensitivity of 38.1. The dual-gate control and bilayer electrode configuration enhance charge transport and gate coupling, resulting in improved drain current modulation and detection accuracy. With its high sensitivity, real-time detection capability, biocompatibility, and suitability for scalable, low-cost fabrication, the DMBE-DGOTFT platform offers significant promise for next-generation applications in medical diagnostics, environmental monitoring, and point-of-care healthcare systems.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107039"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced biomolecule sensing: Simulation and sensitivity analysis of a dielectric-modulated bilayer electrode in DGOTFT\",\"authors\":\"Chandaboina Pavan Kumar,&nbsp;Manish Kumar Singh\",\"doi\":\"10.1016/j.rineng.2025.107039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A dielectric-modulated bilayer electrode double-gate organic thin-film transistor (DMBE-DGOTFT), employing Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) as the active layer, is designed for selective and label-free biomolecule detection. The DMBE-DGOTFT biosensor leverages a biocavity integrated within the gate dielectric region, where the variations in dielectric constant and biomolecular charge density significantly influence the device electrical response. The key parameters, including Drain current variation, DNTT thickness, electric field distribution, charge polarity, and electrostatic potential—are systematically analyzed under diverse biosensing conditions using SILVACO ATLAS TCAD simulations. The DMBE-DGOTFT biosensor exhibits a maximum sensitivity of <span><math><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span> for a charged biomolecule (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>12</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>) at a dielectric constant of 12, it demonstrates superior performance compared to conventional dielectric-modulated double-gate biosensors, with a sensitivity of 38.1. The dual-gate control and bilayer electrode configuration enhance charge transport and gate coupling, resulting in improved drain current modulation and detection accuracy. With its high sensitivity, real-time detection capability, biocompatibility, and suitability for scalable, low-cost fabrication, the DMBE-DGOTFT platform offers significant promise for next-generation applications in medical diagnostics, environmental monitoring, and point-of-care healthcare systems.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107039\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025030956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025030956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要设计了一种介电调制双层电极双栅有机薄膜晶体管(DMBE-DGOTFT),以Dinaphtho[2,3-b:2',3'-f]噻吩[3,2-b]噻吩(DNTT)为有源层,用于选择性和无标记的生物分子检测。DMBE-DGOTFT生物传感器利用集成在栅极介电区域内的生物腔,其中介电常数和生物分子电荷密度的变化显著影响器件的电响应。利用SILVACO ATLAS TCAD仿真系统分析了不同生物传感条件下漏极电流变化、DNTT厚度、电场分布、电荷极性和静电电位等关键参数。DMBE-DGOTFT生物传感器在介电常数为12时,对带电生物分子(Qf=1×1012cm−2)的最大灵敏度为4.5×102,与传统的介电调制双栅生物传感器(灵敏度为38.1)相比,具有优越的性能。双栅控制和双层电极结构增强了电荷传输和栅极耦合,从而提高了漏极电流调制和检测精度。凭借其高灵敏度、实时检测能力、生物相容性以及可扩展、低成本制造的适用性,DMBE-DGOTFT平台为下一代医疗诊断、环境监测和即时医疗保健系统的应用提供了重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced biomolecule sensing: Simulation and sensitivity analysis of a dielectric-modulated bilayer electrode in DGOTFT
A dielectric-modulated bilayer electrode double-gate organic thin-film transistor (DMBE-DGOTFT), employing Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) as the active layer, is designed for selective and label-free biomolecule detection. The DMBE-DGOTFT biosensor leverages a biocavity integrated within the gate dielectric region, where the variations in dielectric constant and biomolecular charge density significantly influence the device electrical response. The key parameters, including Drain current variation, DNTT thickness, electric field distribution, charge polarity, and electrostatic potential—are systematically analyzed under diverse biosensing conditions using SILVACO ATLAS TCAD simulations. The DMBE-DGOTFT biosensor exhibits a maximum sensitivity of 4.5×102 for a charged biomolecule (Qf=1×1012cm2) at a dielectric constant of 12, it demonstrates superior performance compared to conventional dielectric-modulated double-gate biosensors, with a sensitivity of 38.1. The dual-gate control and bilayer electrode configuration enhance charge transport and gate coupling, resulting in improved drain current modulation and detection accuracy. With its high sensitivity, real-time detection capability, biocompatibility, and suitability for scalable, low-cost fabrication, the DMBE-DGOTFT platform offers significant promise for next-generation applications in medical diagnostics, environmental monitoring, and point-of-care healthcare systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信