采用RSM-ANN-GA杂交模型优化顺序粉碎组织-微波辅助提取和树脂纯化丹参中丹酚酸的工艺

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Qiang Zeng, Weifeng Jin, Jianzhen Chen, Yu He
{"title":"采用RSM-ANN-GA杂交模型优化顺序粉碎组织-微波辅助提取和树脂纯化丹参中丹酚酸的工艺","authors":"Qiang Zeng,&nbsp;Weifeng Jin,&nbsp;Jianzhen Chen,&nbsp;Yu He","doi":"10.1016/j.rineng.2025.107154","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a sequential smashing tissue-microwave assisted extraction (ST-MAE) method to extract salvianolic acids (SAs) from <em>Salviae miltiorrhizae</em> Radix et Rhizoma (SMR). Macroporous resin purification further enhanced the extract’s biological activity. Response surface methodology (RSM) and an artificial neural network embedded in a genetic algorithm (ANN-GA) optimized the extraction and purification parameters. Extraction kinetic studies revealed that the Weibull model accurately described the time-dependent behavior of 10 major SAs, reflecting efficient diffusion and compound stability under optimized conditions. Compared with RSM, the hybrid ANN-GA model significantly improved the antioxidant activity of obtained products (<em>p</em> &lt; 0.05). The ST-MAE method optimized by ANN-GA increased SAs yield by 2.03, 1.95, and 1.90 fold compared to smashing tissue extraction, microwave extraction, and heating reflux extraction, respectively. ST-MAE extract showed superior antioxidant activity in DPPH, ABTS, FRAP, and ORAC assays. After purification, the SAs content increased from 18.49 % to 65.87 %, and the antioxidant activity was significantly enhanced. In conclusion, this study provides an efficient approach to produce antioxidant-rich SAs from SMR, with the ST-MAE method and the hybrid optimization strategy demonstrating significant advantages.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107154"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of sequential smashing tissue-microwave assisted extraction and resin purification of salvianolic acids from Salviae miltiorrhizae Radix et Rhizoma using a hybrid RSM-ANN-GA model\",\"authors\":\"Qiang Zeng,&nbsp;Weifeng Jin,&nbsp;Jianzhen Chen,&nbsp;Yu He\",\"doi\":\"10.1016/j.rineng.2025.107154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study developed a sequential smashing tissue-microwave assisted extraction (ST-MAE) method to extract salvianolic acids (SAs) from <em>Salviae miltiorrhizae</em> Radix et Rhizoma (SMR). Macroporous resin purification further enhanced the extract’s biological activity. Response surface methodology (RSM) and an artificial neural network embedded in a genetic algorithm (ANN-GA) optimized the extraction and purification parameters. Extraction kinetic studies revealed that the Weibull model accurately described the time-dependent behavior of 10 major SAs, reflecting efficient diffusion and compound stability under optimized conditions. Compared with RSM, the hybrid ANN-GA model significantly improved the antioxidant activity of obtained products (<em>p</em> &lt; 0.05). The ST-MAE method optimized by ANN-GA increased SAs yield by 2.03, 1.95, and 1.90 fold compared to smashing tissue extraction, microwave extraction, and heating reflux extraction, respectively. ST-MAE extract showed superior antioxidant activity in DPPH, ABTS, FRAP, and ORAC assays. After purification, the SAs content increased from 18.49 % to 65.87 %, and the antioxidant activity was significantly enhanced. In conclusion, this study provides an efficient approach to produce antioxidant-rich SAs from SMR, with the ST-MAE method and the hybrid optimization strategy demonstrating significant advantages.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107154\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025032098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025032098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建立了顺序粉碎组织-微波辅助提取法(ST-MAE)从丹参中提取丹参酚酸(SAs)的方法。大孔树脂纯化进一步提高了提取物的生物活性。响应面法(RSM)和嵌入遗传算法的人工神经网络(ANN-GA)优化了提取和纯化参数。提取动力学研究表明,Weibull模型准确地描述了10种主要sa的时间依赖性行为,反映了优化条件下的有效扩散和化合物稳定性。与RSM相比,ANN-GA混合模型显著提高了所得产品的抗氧化活性(p < 0.05)。经ANN-GA优化的ST-MAE法与粉碎组织提取法、微波提取法和加热回流提取法相比,sa得率分别提高2.03倍、1.95倍和1.90倍。ST-MAE提取物在DPPH、ABTS、FRAP和ORAC检测中显示出优越的抗氧化活性。纯化后的SAs含量由18.49%提高到65.87%,抗氧化活性显著增强。综上所述,本研究为SMR制备富含抗氧化剂的sa提供了一条有效途径,其中ST-MAE法和混合优化策略具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of sequential smashing tissue-microwave assisted extraction and resin purification of salvianolic acids from Salviae miltiorrhizae Radix et Rhizoma using a hybrid RSM-ANN-GA model
This study developed a sequential smashing tissue-microwave assisted extraction (ST-MAE) method to extract salvianolic acids (SAs) from Salviae miltiorrhizae Radix et Rhizoma (SMR). Macroporous resin purification further enhanced the extract’s biological activity. Response surface methodology (RSM) and an artificial neural network embedded in a genetic algorithm (ANN-GA) optimized the extraction and purification parameters. Extraction kinetic studies revealed that the Weibull model accurately described the time-dependent behavior of 10 major SAs, reflecting efficient diffusion and compound stability under optimized conditions. Compared with RSM, the hybrid ANN-GA model significantly improved the antioxidant activity of obtained products (p < 0.05). The ST-MAE method optimized by ANN-GA increased SAs yield by 2.03, 1.95, and 1.90 fold compared to smashing tissue extraction, microwave extraction, and heating reflux extraction, respectively. ST-MAE extract showed superior antioxidant activity in DPPH, ABTS, FRAP, and ORAC assays. After purification, the SAs content increased from 18.49 % to 65.87 %, and the antioxidant activity was significantly enhanced. In conclusion, this study provides an efficient approach to produce antioxidant-rich SAs from SMR, with the ST-MAE method and the hybrid optimization strategy demonstrating significant advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信