煤无柱开采红泥混凝土墩柱性能分析及基于机器学习的巷道变形预测

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Yanhui Zhu , Ye Tian , Peilin Gong , Kang Yi , Guang Wen
{"title":"煤无柱开采红泥混凝土墩柱性能分析及基于机器学习的巷道变形预测","authors":"Yanhui Zhu ,&nbsp;Ye Tian ,&nbsp;Peilin Gong ,&nbsp;Kang Yi ,&nbsp;Guang Wen","doi":"10.1016/j.rineng.2025.107166","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce concrete costs in pillarless coal mining and mitigate environmental impacts of red mud, this study integrates onsite research, numerical simulation, theoretical analysis, laboratory testing, and machine learning to develop a genetic algorithm-optimized AdaBoost prediction model for roadway deformation control using 20 % red mud concrete pier columns. Laboratory results demonstrate that the 20 % red mud concrete achieves balanced strength development, providing sufficient early strength (e.g., 16 MPa at 7 days) and high mid-to-late stage strength (e.g., 26.9 MPa at 28 days). Field implementation at Xiegou Mine’s 23,111 working face, validated by onsite monitoring, confirms that these columns effectively stabilize roadway deformation, limiting top and bottom slab displacements to 480 mm and 260 mm respectively at 1000 m mining distance—well within design tolerance. The prediction model exhibits high accuracy (MSE: 0.7830, RMSE: 0.8465, MAE: 0.4721, MAPE: 0.0342), with field data closely matching predicted deformation trends and ultimate limits. This high accuracy ensures the safe mining of the 23,111 working face.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107166"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of red mud concrete pier columns in coal pillarless mining and roadway deformation prediction based on machine learning\",\"authors\":\"Yanhui Zhu ,&nbsp;Ye Tian ,&nbsp;Peilin Gong ,&nbsp;Kang Yi ,&nbsp;Guang Wen\",\"doi\":\"10.1016/j.rineng.2025.107166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To reduce concrete costs in pillarless coal mining and mitigate environmental impacts of red mud, this study integrates onsite research, numerical simulation, theoretical analysis, laboratory testing, and machine learning to develop a genetic algorithm-optimized AdaBoost prediction model for roadway deformation control using 20 % red mud concrete pier columns. Laboratory results demonstrate that the 20 % red mud concrete achieves balanced strength development, providing sufficient early strength (e.g., 16 MPa at 7 days) and high mid-to-late stage strength (e.g., 26.9 MPa at 28 days). Field implementation at Xiegou Mine’s 23,111 working face, validated by onsite monitoring, confirms that these columns effectively stabilize roadway deformation, limiting top and bottom slab displacements to 480 mm and 260 mm respectively at 1000 m mining distance—well within design tolerance. The prediction model exhibits high accuracy (MSE: 0.7830, RMSE: 0.8465, MAE: 0.4721, MAPE: 0.0342), with field data closely matching predicted deformation trends and ultimate limits. This high accuracy ensures the safe mining of the 23,111 working face.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107166\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025032219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025032219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了降低无柱煤开采中的混凝土成本,减轻赤泥对环境的影响,本研究将现场研究、数值模拟、理论分析、实验室测试和机器学习相结合,开发了一种遗传算法优化的AdaBoost预测模型,用于使用20%赤泥混凝土墩柱控制巷道变形。试验结果表明,20%赤泥混凝土实现了强度发展的平衡,具有足够的早期强度(7天16mpa)和较高的中后期强度(28天26.9 MPa)。在斜沟矿23111工作面的现场实施,通过现场监测验证,证实了这些矿柱有效地稳定了巷道变形,在1000 m开采距离将顶板和底板位移分别限制在480 mm和260 mm,完全在设计公差范围内。预测模型具有较高的精度(MSE: 0.7830, RMSE: 0.8465, MAE: 0.4721, MAPE: 0.0342),现场数据与预测的变形趋势和极限非常吻合。这种高精度保证了23,111工作面的安全开采。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of red mud concrete pier columns in coal pillarless mining and roadway deformation prediction based on machine learning
To reduce concrete costs in pillarless coal mining and mitigate environmental impacts of red mud, this study integrates onsite research, numerical simulation, theoretical analysis, laboratory testing, and machine learning to develop a genetic algorithm-optimized AdaBoost prediction model for roadway deformation control using 20 % red mud concrete pier columns. Laboratory results demonstrate that the 20 % red mud concrete achieves balanced strength development, providing sufficient early strength (e.g., 16 MPa at 7 days) and high mid-to-late stage strength (e.g., 26.9 MPa at 28 days). Field implementation at Xiegou Mine’s 23,111 working face, validated by onsite monitoring, confirms that these columns effectively stabilize roadway deformation, limiting top and bottom slab displacements to 480 mm and 260 mm respectively at 1000 m mining distance—well within design tolerance. The prediction model exhibits high accuracy (MSE: 0.7830, RMSE: 0.8465, MAE: 0.4721, MAPE: 0.0342), with field data closely matching predicted deformation trends and ultimate limits. This high accuracy ensures the safe mining of the 23,111 working face.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信