{"title":"o波段两级和三级三通pdfa性能评价","authors":"Hasan Cihangir , Murat Yücel","doi":"10.1016/j.yofte.2025.104388","DOIUrl":null,"url":null,"abstract":"<div><div>Tunable laser source (TLS), <span><math><msup><mrow><mi>P</mi><mi>r</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> doped fiber (PDF), and pump laser are the main design components for the praseodymium doped fiber amplifier (PDFA) design. Determination of the important parameter values of these components for the design is quite essential in terms of cost and performance (e.g., gain, power conversion effect [PCE]). For TLS, signal wavelength and power; for PDF, PDF length, ion density, upconversion, numerical aperture, core radius, doping radius, and operating environment temperature; pump laser, pump power, and pump wavelength are the critical design parameters. Another factor that will improve the performance of the amplifier is the amplifier configuration. Although there are single-pass and double-pass PDFA studies in the literature, in this article, for the first time, the simulation, parameter optimization, and analysis of two-stage triple-pass PDFA (2P3S-PDFA) and three-stage triple-pass PDFA (2P3S-PDFA) are performed. The performances of 2P3S-PDFA and 2P3S-PDFA are compared in terms of gain and noise figure (NF). The optimum gain obtained for 2S3P-PDFA is 49,4 dB, and the NF at this point is around 6,5 dB. For 3S3P-PDFA, the optimum gain is 47,7 dB and the NF at this point is around 5,1 dB. When we look at the two amplifier types in general, 2S3P-PDFA performs better than 3S3P-PDFA in terms of optimum gain by around 1,7 dB. However, in terms of NF, 2S3P-PDFA has more NF than 3S3P-PDFA by around 1,6 dB. As a result of the optimization, it is seen that the 2S3P-PDFA system is more efficient than the 3S3P-PDFA system in terms of gain.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"95 ","pages":"Article 104388"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of two-stage and three-stage triple pass PDFAs in O-band\",\"authors\":\"Hasan Cihangir , Murat Yücel\",\"doi\":\"10.1016/j.yofte.2025.104388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tunable laser source (TLS), <span><math><msup><mrow><mi>P</mi><mi>r</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> doped fiber (PDF), and pump laser are the main design components for the praseodymium doped fiber amplifier (PDFA) design. Determination of the important parameter values of these components for the design is quite essential in terms of cost and performance (e.g., gain, power conversion effect [PCE]). For TLS, signal wavelength and power; for PDF, PDF length, ion density, upconversion, numerical aperture, core radius, doping radius, and operating environment temperature; pump laser, pump power, and pump wavelength are the critical design parameters. Another factor that will improve the performance of the amplifier is the amplifier configuration. Although there are single-pass and double-pass PDFA studies in the literature, in this article, for the first time, the simulation, parameter optimization, and analysis of two-stage triple-pass PDFA (2P3S-PDFA) and three-stage triple-pass PDFA (2P3S-PDFA) are performed. The performances of 2P3S-PDFA and 2P3S-PDFA are compared in terms of gain and noise figure (NF). The optimum gain obtained for 2S3P-PDFA is 49,4 dB, and the NF at this point is around 6,5 dB. For 3S3P-PDFA, the optimum gain is 47,7 dB and the NF at this point is around 5,1 dB. When we look at the two amplifier types in general, 2S3P-PDFA performs better than 3S3P-PDFA in terms of optimum gain by around 1,7 dB. However, in terms of NF, 2S3P-PDFA has more NF than 3S3P-PDFA by around 1,6 dB. As a result of the optimization, it is seen that the 2S3P-PDFA system is more efficient than the 3S3P-PDFA system in terms of gain.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"95 \",\"pages\":\"Article 104388\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520025002639\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520025002639","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance evaluation of two-stage and three-stage triple pass PDFAs in O-band
Tunable laser source (TLS), doped fiber (PDF), and pump laser are the main design components for the praseodymium doped fiber amplifier (PDFA) design. Determination of the important parameter values of these components for the design is quite essential in terms of cost and performance (e.g., gain, power conversion effect [PCE]). For TLS, signal wavelength and power; for PDF, PDF length, ion density, upconversion, numerical aperture, core radius, doping radius, and operating environment temperature; pump laser, pump power, and pump wavelength are the critical design parameters. Another factor that will improve the performance of the amplifier is the amplifier configuration. Although there are single-pass and double-pass PDFA studies in the literature, in this article, for the first time, the simulation, parameter optimization, and analysis of two-stage triple-pass PDFA (2P3S-PDFA) and three-stage triple-pass PDFA (2P3S-PDFA) are performed. The performances of 2P3S-PDFA and 2P3S-PDFA are compared in terms of gain and noise figure (NF). The optimum gain obtained for 2S3P-PDFA is 49,4 dB, and the NF at this point is around 6,5 dB. For 3S3P-PDFA, the optimum gain is 47,7 dB and the NF at this point is around 5,1 dB. When we look at the two amplifier types in general, 2S3P-PDFA performs better than 3S3P-PDFA in terms of optimum gain by around 1,7 dB. However, in terms of NF, 2S3P-PDFA has more NF than 3S3P-PDFA by around 1,6 dB. As a result of the optimization, it is seen that the 2S3P-PDFA system is more efficient than the 3S3P-PDFA system in terms of gain.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.