{"title":"掺杂过渡金属的HfS2单分子膜检测锂离子电池热失控气体的DFT研究","authors":"Tianyan Jiang, Zhineng Zhou, Feifan Wu, Yuxin Liu, Shiqi Li, Shaolan Lei, Maoqiang Bi","doi":"10.1016/j.susc.2025.122852","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time monitoring of characteristic gases (CO, CO<sub>2</sub>, and C<sub>2</sub>H<sub>2</sub>) released during thermal runaway of lithium-ion batteries is crucial for battery safety. In this paper, the adsorption performance and gas-sensing mechanism of transition metal (Ag, Cu, Pt)-doped HfS<sub>2</sub> monolayers for thermal runaway characteristic gases are systematically investigated based on density functional theory. By analyzing the parameters of adsorption energy, charge transfer, density of states and energy band structure, it is found that Cu-HfS<sub>2</sub> exhibits optimal adsorption performance for CO with significant charge transfer. In addition, Ag-HfS<sub>2</sub> and Pt-HfS<sub>2</sub> also show strong chemisorption properties for CO and C<sub>2</sub>H<sub>2</sub>. The selective detection and rapid desorption of gases can be realized by modulating the working temperature. The results show that metal doping significantly improves the gas-sensing performance of HfS<sub>2</sub>, which provides a theoretical basis for the development of highly sensitive and selective lithium-ion battery thermal runaway gas sensors.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"763 ","pages":"Article 122852"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study of transition metal-doped HfS2 monolayers for detection of thermal runaway gases in lithium-ion batteries\",\"authors\":\"Tianyan Jiang, Zhineng Zhou, Feifan Wu, Yuxin Liu, Shiqi Li, Shaolan Lei, Maoqiang Bi\",\"doi\":\"10.1016/j.susc.2025.122852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time monitoring of characteristic gases (CO, CO<sub>2</sub>, and C<sub>2</sub>H<sub>2</sub>) released during thermal runaway of lithium-ion batteries is crucial for battery safety. In this paper, the adsorption performance and gas-sensing mechanism of transition metal (Ag, Cu, Pt)-doped HfS<sub>2</sub> monolayers for thermal runaway characteristic gases are systematically investigated based on density functional theory. By analyzing the parameters of adsorption energy, charge transfer, density of states and energy band structure, it is found that Cu-HfS<sub>2</sub> exhibits optimal adsorption performance for CO with significant charge transfer. In addition, Ag-HfS<sub>2</sub> and Pt-HfS<sub>2</sub> also show strong chemisorption properties for CO and C<sub>2</sub>H<sub>2</sub>. The selective detection and rapid desorption of gases can be realized by modulating the working temperature. The results show that metal doping significantly improves the gas-sensing performance of HfS<sub>2</sub>, which provides a theoretical basis for the development of highly sensitive and selective lithium-ion battery thermal runaway gas sensors.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"763 \",\"pages\":\"Article 122852\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003960282500158X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003960282500158X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
DFT study of transition metal-doped HfS2 monolayers for detection of thermal runaway gases in lithium-ion batteries
Real-time monitoring of characteristic gases (CO, CO2, and C2H2) released during thermal runaway of lithium-ion batteries is crucial for battery safety. In this paper, the adsorption performance and gas-sensing mechanism of transition metal (Ag, Cu, Pt)-doped HfS2 monolayers for thermal runaway characteristic gases are systematically investigated based on density functional theory. By analyzing the parameters of adsorption energy, charge transfer, density of states and energy band structure, it is found that Cu-HfS2 exhibits optimal adsorption performance for CO with significant charge transfer. In addition, Ag-HfS2 and Pt-HfS2 also show strong chemisorption properties for CO and C2H2. The selective detection and rapid desorption of gases can be realized by modulating the working temperature. The results show that metal doping significantly improves the gas-sensing performance of HfS2, which provides a theoretical basis for the development of highly sensitive and selective lithium-ion battery thermal runaway gas sensors.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.