{"title":"具有反应流的循环湍流流化床湍流传质模型","authors":"Hailun Ren , Liang Zeng , Wenbin Li , Zhongli Tang , Donghui Zhang","doi":"10.1016/j.partic.2025.08.025","DOIUrl":null,"url":null,"abstract":"<div><div>The circulating turbulent fluidization and circulating turbulent fluidized bed (CTFB) have been proposed over the past two decades. It is believed that CTFB can overcome the disadvantages encountered in circulating fluidized bed (CFB) and turbulent fluidized bed (TFB), while combining their advantages, such as high solids circulation rates and high solids holdup. These characteristics are particularly favorable for reactions requiring continuous particle withdrawal and addition. However, accurate modeling and simulation of CTFB with reactive flow remain challenges primarily due to difficulties in capturing intrinsic meso-structures and the turbulent effects. In this study, a turbulent mass transfer model, namely the two-equation turbulent (TET) model, is proposed for the simulation of CTFB. The TET model integrates the energy minimization multiscale (EMMS)-based drag, the <span><math><mrow><msub><mi>k</mi><mi>q</mi></msub><mo>−</mo><msub><mi>ε</mi><mi>q</mi></msub><mo>−</mo><mi>Θ</mi></mrow></math></span> approach and the recently developed <span><math><mrow><mover><msup><mi>c</mi><mn>2</mn></msup><mo>¯</mo></mover><mo>−</mo><msub><mi>ε</mi><mi>c</mi></msub></mrow></math></span> formulations to rigorously account for meso-structure and turbulent effects. With this model, the species concentration, phase temperature and velocity as well as solids volume fraction distributions can be obtained simultaneously. Satisfactory agreements between simulated results and experimental data are found (e.g., average absolute relative deviation between a typical simulation by the TET model and experiment on species concentration distributions is about 8.73 %). Such information would be helpful for the design and optimization of a new CTFB system or assessment of an existed one.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"106 ","pages":"Pages 131-144"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A turbulent mass transfer model for circulating turbulent fluidized bed with reactive flow\",\"authors\":\"Hailun Ren , Liang Zeng , Wenbin Li , Zhongli Tang , Donghui Zhang\",\"doi\":\"10.1016/j.partic.2025.08.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The circulating turbulent fluidization and circulating turbulent fluidized bed (CTFB) have been proposed over the past two decades. It is believed that CTFB can overcome the disadvantages encountered in circulating fluidized bed (CFB) and turbulent fluidized bed (TFB), while combining their advantages, such as high solids circulation rates and high solids holdup. These characteristics are particularly favorable for reactions requiring continuous particle withdrawal and addition. However, accurate modeling and simulation of CTFB with reactive flow remain challenges primarily due to difficulties in capturing intrinsic meso-structures and the turbulent effects. In this study, a turbulent mass transfer model, namely the two-equation turbulent (TET) model, is proposed for the simulation of CTFB. The TET model integrates the energy minimization multiscale (EMMS)-based drag, the <span><math><mrow><msub><mi>k</mi><mi>q</mi></msub><mo>−</mo><msub><mi>ε</mi><mi>q</mi></msub><mo>−</mo><mi>Θ</mi></mrow></math></span> approach and the recently developed <span><math><mrow><mover><msup><mi>c</mi><mn>2</mn></msup><mo>¯</mo></mover><mo>−</mo><msub><mi>ε</mi><mi>c</mi></msub></mrow></math></span> formulations to rigorously account for meso-structure and turbulent effects. With this model, the species concentration, phase temperature and velocity as well as solids volume fraction distributions can be obtained simultaneously. Satisfactory agreements between simulated results and experimental data are found (e.g., average absolute relative deviation between a typical simulation by the TET model and experiment on species concentration distributions is about 8.73 %). Such information would be helpful for the design and optimization of a new CTFB system or assessment of an existed one.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"106 \",\"pages\":\"Pages 131-144\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125002378\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125002378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A turbulent mass transfer model for circulating turbulent fluidized bed with reactive flow
The circulating turbulent fluidization and circulating turbulent fluidized bed (CTFB) have been proposed over the past two decades. It is believed that CTFB can overcome the disadvantages encountered in circulating fluidized bed (CFB) and turbulent fluidized bed (TFB), while combining their advantages, such as high solids circulation rates and high solids holdup. These characteristics are particularly favorable for reactions requiring continuous particle withdrawal and addition. However, accurate modeling and simulation of CTFB with reactive flow remain challenges primarily due to difficulties in capturing intrinsic meso-structures and the turbulent effects. In this study, a turbulent mass transfer model, namely the two-equation turbulent (TET) model, is proposed for the simulation of CTFB. The TET model integrates the energy minimization multiscale (EMMS)-based drag, the approach and the recently developed formulations to rigorously account for meso-structure and turbulent effects. With this model, the species concentration, phase temperature and velocity as well as solids volume fraction distributions can be obtained simultaneously. Satisfactory agreements between simulated results and experimental data are found (e.g., average absolute relative deviation between a typical simulation by the TET model and experiment on species concentration distributions is about 8.73 %). Such information would be helpful for the design and optimization of a new CTFB system or assessment of an existed one.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.