基于POD-Galerkin投影降阶模型和3DVar数据同化的参数状态联合估计框架

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chuqiao Dai , Di Yang , Chunyu Zhang , Peng Ding , Chengjie Duan , Juqing Song
{"title":"基于POD-Galerkin投影降阶模型和3DVar数据同化的参数状态联合估计框架","authors":"Chuqiao Dai ,&nbsp;Di Yang ,&nbsp;Chunyu Zhang ,&nbsp;Peng Ding ,&nbsp;Chengjie Duan ,&nbsp;Juqing Song","doi":"10.1016/j.compfluid.2025.106815","DOIUrl":null,"url":null,"abstract":"<div><div>Reduced-order models (ROMs) provide a fast and efficient approach to approximate full-order numerical models by capturing their essential dynamics. However, uncertainties in boundary conditions can lead to noticeable discrepancies between ROM simulations and real-world behavior. To address this challenge, this study introduces a novel framework that jointly corrects parameters and states by integrating ROMs with three-dimensional variational data assimilation (3D-Var). The framework operates in two sequential stages: a parameter estimation stage and a state reconstruction stage. Optimal parameter estimates are firstly derived to drive the ROM, generating optimal background information for the subsequent state reconstruction. A background error covariance matrix is computed from snapshots generating the ROM, significantly enhancing the reliability of the online data assimilation process. This study further explores the influence of sensor placement, measurement noise, and the number of measurement points on assimilation performance. Guidelines for optimal sensor placement are provided, along with an analysis of the prediction capability over extended parameter ranges. This framework offers a robust solution for enhancing the fidelity of ROMs in practical applications.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106815"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint parameter-state estimation framework using POD-Galerkin projected reduced order model and 3DVar data assimilation\",\"authors\":\"Chuqiao Dai ,&nbsp;Di Yang ,&nbsp;Chunyu Zhang ,&nbsp;Peng Ding ,&nbsp;Chengjie Duan ,&nbsp;Juqing Song\",\"doi\":\"10.1016/j.compfluid.2025.106815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reduced-order models (ROMs) provide a fast and efficient approach to approximate full-order numerical models by capturing their essential dynamics. However, uncertainties in boundary conditions can lead to noticeable discrepancies between ROM simulations and real-world behavior. To address this challenge, this study introduces a novel framework that jointly corrects parameters and states by integrating ROMs with three-dimensional variational data assimilation (3D-Var). The framework operates in two sequential stages: a parameter estimation stage and a state reconstruction stage. Optimal parameter estimates are firstly derived to drive the ROM, generating optimal background information for the subsequent state reconstruction. A background error covariance matrix is computed from snapshots generating the ROM, significantly enhancing the reliability of the online data assimilation process. This study further explores the influence of sensor placement, measurement noise, and the number of measurement points on assimilation performance. Guidelines for optimal sensor placement are provided, along with an analysis of the prediction capability over extended parameter ranges. This framework offers a robust solution for enhancing the fidelity of ROMs in practical applications.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"302 \",\"pages\":\"Article 106815\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025002750\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002750","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

降阶模型(ROMs)通过捕捉全阶数值模型的基本动力学特性,为逼近全阶数值模型提供了一种快速有效的方法。然而,边界条件的不确定性可能导致ROM模拟与现实世界行为之间的明显差异。为了应对这一挑战,本研究引入了一个新的框架,通过将rom与三维变分数据同化(3D-Var)相结合,共同校正参数和状态。该框架在两个连续阶段运行:参数估计阶段和状态重建阶段。首先导出驱动ROM的最优参数估计,为后续状态重构生成最优背景信息。从生成ROM的快照中计算出背景误差协方差矩阵,大大提高了在线数据同化过程的可靠性。本研究进一步探讨了传感器位置、测量噪声和测量点数目对同化性能的影响。提供了最佳传感器放置的指南,以及对扩展参数范围内的预测能力的分析。该框架为提高实际应用中rom的保真度提供了一个可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A joint parameter-state estimation framework using POD-Galerkin projected reduced order model and 3DVar data assimilation
Reduced-order models (ROMs) provide a fast and efficient approach to approximate full-order numerical models by capturing their essential dynamics. However, uncertainties in boundary conditions can lead to noticeable discrepancies between ROM simulations and real-world behavior. To address this challenge, this study introduces a novel framework that jointly corrects parameters and states by integrating ROMs with three-dimensional variational data assimilation (3D-Var). The framework operates in two sequential stages: a parameter estimation stage and a state reconstruction stage. Optimal parameter estimates are firstly derived to drive the ROM, generating optimal background information for the subsequent state reconstruction. A background error covariance matrix is computed from snapshots generating the ROM, significantly enhancing the reliability of the online data assimilation process. This study further explores the influence of sensor placement, measurement noise, and the number of measurement points on assimilation performance. Guidelines for optimal sensor placement are provided, along with an analysis of the prediction capability over extended parameter ranges. This framework offers a robust solution for enhancing the fidelity of ROMs in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信