Joachim Toft , Christine Pfeuffer , Nenad Teofanov
{"title":"广义调制空间的范数估计和傅里叶型算子的连续性","authors":"Joachim Toft , Christine Pfeuffer , Nenad Teofanov","doi":"10.1016/j.jfa.2025.111177","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a broad class of modulation spaces <span><math><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, parameterized with weight function <em>ω</em> and a normal quasi-Banach function space <span><math><mi>B</mi></math></span> of order <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Then we prove that <span><math><mi>f</mi><mo>∈</mo><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, if and only if <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mi>f</mi></math></span> belongs to the Wiener amalgam space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, and<span><span><span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></msub><mo>≍</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mi>f</mi><mspace></mspace><mo>⋅</mo><mspace></mspace><mi>ω</mi><mo>‖</mo></mrow><mrow><mi>B</mi></mrow></msub><mo>≍</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>r</mi><mo>∈</mo><mo>[</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>∞</mo><mo>]</mo><mo>.</mo></math></span></span></span></div><div>We use the results to extend and improve continuity and lifting properties for pseudo-differential and Toeplitz operators with symbols in weighted <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>-spaces, <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span>, when acting on <span><math><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>-spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111177"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm estimates for a broad class of modulation spaces, and continuity of Fourier type operators\",\"authors\":\"Joachim Toft , Christine Pfeuffer , Nenad Teofanov\",\"doi\":\"10.1016/j.jfa.2025.111177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a broad class of modulation spaces <span><math><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, parameterized with weight function <em>ω</em> and a normal quasi-Banach function space <span><math><mi>B</mi></math></span> of order <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Then we prove that <span><math><mi>f</mi><mo>∈</mo><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, if and only if <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mi>f</mi></math></span> belongs to the Wiener amalgam space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, and<span><span><span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></msub><mo>≍</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mi>f</mi><mspace></mspace><mo>⋅</mo><mspace></mspace><mi>ω</mi><mo>‖</mo></mrow><mrow><mi>B</mi></mrow></msub><mo>≍</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>r</mi><mo>∈</mo><mo>[</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>∞</mo><mo>]</mo><mo>.</mo></math></span></span></span></div><div>We use the results to extend and improve continuity and lifting properties for pseudo-differential and Toeplitz operators with symbols in weighted <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></math></span>-spaces, <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span>, when acting on <span><math><mi>M</mi><mo>(</mo><mi>ω</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>-spaces.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 1\",\"pages\":\"Article 111177\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003593\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003593","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Norm estimates for a broad class of modulation spaces, and continuity of Fourier type operators
We consider a broad class of modulation spaces , parameterized with weight function ω and a normal quasi-Banach function space of order . Then we prove that , if and only if belongs to the Wiener amalgam space , and
We use the results to extend and improve continuity and lifting properties for pseudo-differential and Toeplitz operators with symbols in weighted -spaces, , when acting on -spaces.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis