落石冲击下埋地钢筋混凝土管道破坏机理及安全性评价方法

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Shiwei PENG , Nan JIANG , Yongsheng JIA , Yingkang YAO , Feng YANG , Guopeng LYU
{"title":"落石冲击下埋地钢筋混凝土管道破坏机理及安全性评价方法","authors":"Shiwei PENG ,&nbsp;Nan JIANG ,&nbsp;Yongsheng JIA ,&nbsp;Yingkang YAO ,&nbsp;Feng YANG ,&nbsp;Guopeng LYU","doi":"10.1016/j.rineng.2025.107133","DOIUrl":null,"url":null,"abstract":"<div><div>China's South-to-North Water Diversion Middle Route project (SNWDP) crosses a geologically vulnerable transition zone between the nation's second and third topographic terraces, where elevation differentials exacerbate slope instability and rockfall hazards. Buried reinforced concrete (RC) pipelines in this area face structural risks when rockfall impact energy surpasses the load-bearing capacity of the pipe-soil system, yet critical knowledge gaps remain regarding impact thresholds and dynamic response mechanisms. Through integrated full-scale field experiments and ANSYS/LS-DYNA simulations, this study systematically investigates (1) dynamic response patterns and (2) safety thresholds for RC pipelines subjected to rockfall impacts. Field testing revealed two key phenomena: localized residual stresses develop in soil near impact zones, while horizontal-dominated soil vibrations induce circumferential strain concentration in pipeline mid-sections. Numerical modeling further uncovered diameter-dependent mechanical responses: peak particle velocities concentrate at pipe waists, whereas maximum principal strains and stresses localize at crown and invert positions, respectively. By correlating tensile stress criteria with energy-impact relationships, we established critical collapse thresholds for Groove-and-Tongue (GT) RC pipelines (90–135 cm inner diameters) under rockfall impacts ranging from 0.1 to 1 m³. These validated safety parameters, expressed as maximum allowable drop heights, provides actionable guidelines for the safety rating of buried pipelines in topographically complex areas.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107133"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure mechanism and safety assessment method of buried RC pipelines under rockfall impact\",\"authors\":\"Shiwei PENG ,&nbsp;Nan JIANG ,&nbsp;Yongsheng JIA ,&nbsp;Yingkang YAO ,&nbsp;Feng YANG ,&nbsp;Guopeng LYU\",\"doi\":\"10.1016/j.rineng.2025.107133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>China's South-to-North Water Diversion Middle Route project (SNWDP) crosses a geologically vulnerable transition zone between the nation's second and third topographic terraces, where elevation differentials exacerbate slope instability and rockfall hazards. Buried reinforced concrete (RC) pipelines in this area face structural risks when rockfall impact energy surpasses the load-bearing capacity of the pipe-soil system, yet critical knowledge gaps remain regarding impact thresholds and dynamic response mechanisms. Through integrated full-scale field experiments and ANSYS/LS-DYNA simulations, this study systematically investigates (1) dynamic response patterns and (2) safety thresholds for RC pipelines subjected to rockfall impacts. Field testing revealed two key phenomena: localized residual stresses develop in soil near impact zones, while horizontal-dominated soil vibrations induce circumferential strain concentration in pipeline mid-sections. Numerical modeling further uncovered diameter-dependent mechanical responses: peak particle velocities concentrate at pipe waists, whereas maximum principal strains and stresses localize at crown and invert positions, respectively. By correlating tensile stress criteria with energy-impact relationships, we established critical collapse thresholds for Groove-and-Tongue (GT) RC pipelines (90–135 cm inner diameters) under rockfall impacts ranging from 0.1 to 1 m³. These validated safety parameters, expressed as maximum allowable drop heights, provides actionable guidelines for the safety rating of buried pipelines in topographically complex areas.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107133\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025031883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025031883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

中国的南水北调中线工程(SNWDP)穿越了全国第二和第三地形梯田之间的地质脆弱过渡地带,那里的高程差异加剧了边坡的不稳定和落石危险。该地区埋地钢筋混凝土管道在落石冲击能量超过管土系统承载能力时面临结构风险,但在冲击阈值和动力响应机制方面仍存在重要的知识空白。本研究通过综合全尺寸现场试验和ANSYS/LS-DYNA模拟,系统研究了RC管道在落石冲击作用下的动态响应模式和安全阈值。现场试验揭示了两个关键现象:在冲击区附近的土壤中产生局部残余应力,而水平主导的土壤振动引起管道中段的周向应变集中。数值模拟进一步揭示了与直径相关的力学响应:峰值颗粒速度集中在管道腰部,而最大主应变和应力分别集中在顶部和倒立位置。通过将拉应力准则与能量-冲击关系相关联,我们建立了沟槽舌形(GT) RC管道(内径90-135 cm)在0.1至1 m³的落石冲击下的临界崩溃阈值。这些经过验证的安全参数,以最大允许落差高度表示,为地形复杂地区埋地管道的安全等级提供了可操作的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure mechanism and safety assessment method of buried RC pipelines under rockfall impact
China's South-to-North Water Diversion Middle Route project (SNWDP) crosses a geologically vulnerable transition zone between the nation's second and third topographic terraces, where elevation differentials exacerbate slope instability and rockfall hazards. Buried reinforced concrete (RC) pipelines in this area face structural risks when rockfall impact energy surpasses the load-bearing capacity of the pipe-soil system, yet critical knowledge gaps remain regarding impact thresholds and dynamic response mechanisms. Through integrated full-scale field experiments and ANSYS/LS-DYNA simulations, this study systematically investigates (1) dynamic response patterns and (2) safety thresholds for RC pipelines subjected to rockfall impacts. Field testing revealed two key phenomena: localized residual stresses develop in soil near impact zones, while horizontal-dominated soil vibrations induce circumferential strain concentration in pipeline mid-sections. Numerical modeling further uncovered diameter-dependent mechanical responses: peak particle velocities concentrate at pipe waists, whereas maximum principal strains and stresses localize at crown and invert positions, respectively. By correlating tensile stress criteria with energy-impact relationships, we established critical collapse thresholds for Groove-and-Tongue (GT) RC pipelines (90–135 cm inner diameters) under rockfall impacts ranging from 0.1 to 1 m³. These validated safety parameters, expressed as maximum allowable drop heights, provides actionable guidelines for the safety rating of buried pipelines in topographically complex areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信