考虑颗粒分布、包覆层和界面损伤的高填充复合含能材料微观结构模型

IF 7.1 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Kun Yang, Yanqing Wu, Fenglei Huang
{"title":"考虑颗粒分布、包覆层和界面损伤的高填充复合含能材料微观结构模型","authors":"Kun Yang,&nbsp;Yanqing Wu,&nbsp;Fenglei Huang","doi":"10.1016/j.compstruct.2025.119637","DOIUrl":null,"url":null,"abstract":"<div><div>A microstructure-based model considering the coupling between particle distribution, coated level of particles and binder-particle interface damage-debonding for highly-filled energetic composite materials (HECM) is developed to predict the macro-microscopic mechanical behavior of HECM. A coated parameter rescaling the initial volume fraction of particle relative to binder is imported to describe the significant effects of initially scarce additives on mechanical behavior of HECM. The macroscopic deformation of typical HMX and TATB-based high explosives under uniaxial strain are characterized by three distinct stages: elastic deformation (stage I), stress deterioration due to interface damage (stage II) and fracture (stage III). Parametric studies on microstructural features (particle size and volume fraction, coated level, modulus mismatch) and interface properties (elasticity, strength) underscore their profound influence on macroscopic behavior. Enhanced interface elasticity and strength improve elastic modulus and delay damage initiation, respectively. Smaller particles improve damage resistance, while larger particles dictate fracture dynamics. This research provides critical insights for tailoring HECM performance through microstructural design, interface engineering, and particle size optimization, ultimately advancing the development of robust HECMs with controlled mechanical responses.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119637"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microstructure-based model considering particle distribution, coated level and interface damage for highly-filled composite energetic materials\",\"authors\":\"Kun Yang,&nbsp;Yanqing Wu,&nbsp;Fenglei Huang\",\"doi\":\"10.1016/j.compstruct.2025.119637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A microstructure-based model considering the coupling between particle distribution, coated level of particles and binder-particle interface damage-debonding for highly-filled energetic composite materials (HECM) is developed to predict the macro-microscopic mechanical behavior of HECM. A coated parameter rescaling the initial volume fraction of particle relative to binder is imported to describe the significant effects of initially scarce additives on mechanical behavior of HECM. The macroscopic deformation of typical HMX and TATB-based high explosives under uniaxial strain are characterized by three distinct stages: elastic deformation (stage I), stress deterioration due to interface damage (stage II) and fracture (stage III). Parametric studies on microstructural features (particle size and volume fraction, coated level, modulus mismatch) and interface properties (elasticity, strength) underscore their profound influence on macroscopic behavior. Enhanced interface elasticity and strength improve elastic modulus and delay damage initiation, respectively. Smaller particles improve damage resistance, while larger particles dictate fracture dynamics. This research provides critical insights for tailoring HECM performance through microstructural design, interface engineering, and particle size optimization, ultimately advancing the development of robust HECMs with controlled mechanical responses.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"373 \",\"pages\":\"Article 119637\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325008025\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325008025","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

为预测高填充复合材料的宏观微观力学行为,建立了考虑颗粒分布、颗粒包覆水平和粘结剂-颗粒界面损伤-脱粘耦合的微观结构模型。引入了一个重新调整颗粒相对于粘合剂的初始体积分数的涂层参数,以描述初始稀缺添加剂对HECM力学行为的显着影响。典型HMX和tatb基高爆药在单轴应变作用下的宏观变形表现为弹性变形(阶段1)、界面损伤引起的应力劣化(阶段2)和断裂(阶段3)三个阶段。微观结构特征(粒度和体积分数、包覆水平、模量失配)和界面特性(弹性、强度)的参数化研究强调了它们对宏观行为的深刻影响。界面弹性和强度的增强分别提高了弹性模量和延迟损伤的发生。较小的颗粒提高了抗损伤能力,而较大的颗粒则决定了断裂动力学。这项研究为通过微观结构设计、界面工程和粒度优化来定制HECM性能提供了重要见解,最终推动了具有可控机械响应的稳健HECM的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A microstructure-based model considering particle distribution, coated level and interface damage for highly-filled composite energetic materials
A microstructure-based model considering the coupling between particle distribution, coated level of particles and binder-particle interface damage-debonding for highly-filled energetic composite materials (HECM) is developed to predict the macro-microscopic mechanical behavior of HECM. A coated parameter rescaling the initial volume fraction of particle relative to binder is imported to describe the significant effects of initially scarce additives on mechanical behavior of HECM. The macroscopic deformation of typical HMX and TATB-based high explosives under uniaxial strain are characterized by three distinct stages: elastic deformation (stage I), stress deterioration due to interface damage (stage II) and fracture (stage III). Parametric studies on microstructural features (particle size and volume fraction, coated level, modulus mismatch) and interface properties (elasticity, strength) underscore their profound influence on macroscopic behavior. Enhanced interface elasticity and strength improve elastic modulus and delay damage initiation, respectively. Smaller particles improve damage resistance, while larger particles dictate fracture dynamics. This research provides critical insights for tailoring HECM performance through microstructural design, interface engineering, and particle size optimization, ultimately advancing the development of robust HECMs with controlled mechanical responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信