Zhaochuan Yu , Chao Deng , Tong Lei , Huijie Wang , Yuqian Liu , Chao Liu , Farzad Seidi , Qiang Yong , Huining Xiao
{"title":"用于开发杀菌材料的阳离子抗菌聚合物:策略、机制和应用","authors":"Zhaochuan Yu , Chao Deng , Tong Lei , Huijie Wang , Yuqian Liu , Chao Liu , Farzad Seidi , Qiang Yong , Huining Xiao","doi":"10.1016/j.cis.2025.103658","DOIUrl":null,"url":null,"abstract":"<div><div>The worldwide consumption of antibiotics has significantly contributed to the escalating challenge of antibiotic resistance over the past decades. Therefore, there is a tremendous interest in the development of new non-antibiotic antibacterial agents as alternatives to traditional antimicrobial drugs, which could exhibit prolonged action, enhanced efficacy, and reduced toxicity. Among various antibacterial agents, cationic antibacterial polymers (CAPs) have been particularly appearing due to their plenty of positive-charged groups or segments, enabling them to interact effectively with the negatively charged surfaces of microorganisms, thereby inhibiting their growth. This review paper begins by summarizing the different types and features of CAPs including quaternary ammonium salt (QAS) polymers, guanidine salt (GS) polymers, and quaternary phosphonium salt (QPS) polymers, originating from both natural and synthetic polymers. Subsequently, the antimicrobial mechanisms of CAPs are further discussed, including electrostatic interactions, cell membrane damage, protein precipitation, and DNA damage, and it was pointed out that the synergistic effect of these mechanisms confers strong antimicrobial capabilities to CAPs. Additionally, the article extensively discusses the applications of CAPs in key areas such as textiles, medical care, food packaging, and water treatment, and identifies current challenges, such as the development of resistance, environmental impact, and potential biotoxicity. Moreover, this review summarizes the latest literature on the antibacterial activity of various CAPs combined with different polymers as substrates and provides future directions for exploring the novel non-antibiotic antibacterial agents for various applications.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"346 ","pages":"Article 103658"},"PeriodicalIF":19.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cationic antibacterial polymers for development of bactericidal materials: Strategies, mechanisms, and applications\",\"authors\":\"Zhaochuan Yu , Chao Deng , Tong Lei , Huijie Wang , Yuqian Liu , Chao Liu , Farzad Seidi , Qiang Yong , Huining Xiao\",\"doi\":\"10.1016/j.cis.2025.103658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The worldwide consumption of antibiotics has significantly contributed to the escalating challenge of antibiotic resistance over the past decades. Therefore, there is a tremendous interest in the development of new non-antibiotic antibacterial agents as alternatives to traditional antimicrobial drugs, which could exhibit prolonged action, enhanced efficacy, and reduced toxicity. Among various antibacterial agents, cationic antibacterial polymers (CAPs) have been particularly appearing due to their plenty of positive-charged groups or segments, enabling them to interact effectively with the negatively charged surfaces of microorganisms, thereby inhibiting their growth. This review paper begins by summarizing the different types and features of CAPs including quaternary ammonium salt (QAS) polymers, guanidine salt (GS) polymers, and quaternary phosphonium salt (QPS) polymers, originating from both natural and synthetic polymers. Subsequently, the antimicrobial mechanisms of CAPs are further discussed, including electrostatic interactions, cell membrane damage, protein precipitation, and DNA damage, and it was pointed out that the synergistic effect of these mechanisms confers strong antimicrobial capabilities to CAPs. Additionally, the article extensively discusses the applications of CAPs in key areas such as textiles, medical care, food packaging, and water treatment, and identifies current challenges, such as the development of resistance, environmental impact, and potential biotoxicity. Moreover, this review summarizes the latest literature on the antibacterial activity of various CAPs combined with different polymers as substrates and provides future directions for exploring the novel non-antibiotic antibacterial agents for various applications.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"346 \",\"pages\":\"Article 103658\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625002696\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002696","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cationic antibacterial polymers for development of bactericidal materials: Strategies, mechanisms, and applications
The worldwide consumption of antibiotics has significantly contributed to the escalating challenge of antibiotic resistance over the past decades. Therefore, there is a tremendous interest in the development of new non-antibiotic antibacterial agents as alternatives to traditional antimicrobial drugs, which could exhibit prolonged action, enhanced efficacy, and reduced toxicity. Among various antibacterial agents, cationic antibacterial polymers (CAPs) have been particularly appearing due to their plenty of positive-charged groups or segments, enabling them to interact effectively with the negatively charged surfaces of microorganisms, thereby inhibiting their growth. This review paper begins by summarizing the different types and features of CAPs including quaternary ammonium salt (QAS) polymers, guanidine salt (GS) polymers, and quaternary phosphonium salt (QPS) polymers, originating from both natural and synthetic polymers. Subsequently, the antimicrobial mechanisms of CAPs are further discussed, including electrostatic interactions, cell membrane damage, protein precipitation, and DNA damage, and it was pointed out that the synergistic effect of these mechanisms confers strong antimicrobial capabilities to CAPs. Additionally, the article extensively discusses the applications of CAPs in key areas such as textiles, medical care, food packaging, and water treatment, and identifies current challenges, such as the development of resistance, environmental impact, and potential biotoxicity. Moreover, this review summarizes the latest literature on the antibacterial activity of various CAPs combined with different polymers as substrates and provides future directions for exploring the novel non-antibiotic antibacterial agents for various applications.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.