自激振荡喷管空化动力学涡压耦合机理分析及结构优化

IF 3.8 2区 工程技术 Q1 MECHANICS
Songlin Nie, Yuwei Song, Hui Ji, Junzhou Meng, Yixuan Zhang, Fanglong Yin
{"title":"自激振荡喷管空化动力学涡压耦合机理分析及结构优化","authors":"Songlin Nie,&nbsp;Yuwei Song,&nbsp;Hui Ji,&nbsp;Junzhou Meng,&nbsp;Yixuan Zhang,&nbsp;Fanglong Yin","doi":"10.1016/j.ijmultiphaseflow.2025.105442","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates cavitation dynamics in a self-excited oscillation nozzle (SEON) under gravitational influence using high-speed imaging, computational fluid dynamics (CFD) simulations, Proper Orthogonal Decomposition (POD), wavelet analysis, and multi-objective optimization with Dynamic Adaptive NSGA-II (DANSGA-II). High-speed imaging displays the formation, detachment, and collapse of cavitation cloud. CFD simulations reveal the internal flow field and vapor distribution, clarifying cavitation evolution in the SEON chamber. POD and wavelet analyses demonstrate a nonlinear relationship between cavitation behavior and inlet pressure, with peak performance at 1.5 MPa. A novel vortex-pressure pulsation coupling mechanism was proposed to explain cavitation cloud development. This mechanism guided structural optimization by selecting chamber length (<em>L</em>), impingement wall angle (<em>α</em>), and outlet contraction ratio (<em>d</em><sub>2</sub>/<em>D</em>) as design variables. Multi-objective optimization using DANSGA-II produced optimal nozzle designs. For example, in Case 1 (<em>L</em> = 10.1 mm, <em>α</em> = 103°, <em>d</em><sub>2</sub>/<em>D</em> = 0.1881), the mean vapor volume fraction increased by 59.18 %, and turbulent kinetic energy rose by 32.32 %. Methylene blue degradation experiments showed a 15.88 % removal efficiency after 120 minutes, improving 77.8 % over the baseline. This study investigated a vortex-pressure coupling mechanism through integrated visualization and simulation techniques, thereby facilitating the structural optimization of SEONs and enhancing cavitation performance. The findings provide both theoretical insights and practical guidance for the design and application of SEONs in industrial cleaning and wastewater treatment processes.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"194 ","pages":"Article 105442"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the vortex-pressure coupling mechanism in cavitation dynamics for self-excited oscillation nozzles and its structural optimization\",\"authors\":\"Songlin Nie,&nbsp;Yuwei Song,&nbsp;Hui Ji,&nbsp;Junzhou Meng,&nbsp;Yixuan Zhang,&nbsp;Fanglong Yin\",\"doi\":\"10.1016/j.ijmultiphaseflow.2025.105442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates cavitation dynamics in a self-excited oscillation nozzle (SEON) under gravitational influence using high-speed imaging, computational fluid dynamics (CFD) simulations, Proper Orthogonal Decomposition (POD), wavelet analysis, and multi-objective optimization with Dynamic Adaptive NSGA-II (DANSGA-II). High-speed imaging displays the formation, detachment, and collapse of cavitation cloud. CFD simulations reveal the internal flow field and vapor distribution, clarifying cavitation evolution in the SEON chamber. POD and wavelet analyses demonstrate a nonlinear relationship between cavitation behavior and inlet pressure, with peak performance at 1.5 MPa. A novel vortex-pressure pulsation coupling mechanism was proposed to explain cavitation cloud development. This mechanism guided structural optimization by selecting chamber length (<em>L</em>), impingement wall angle (<em>α</em>), and outlet contraction ratio (<em>d</em><sub>2</sub>/<em>D</em>) as design variables. Multi-objective optimization using DANSGA-II produced optimal nozzle designs. For example, in Case 1 (<em>L</em> = 10.1 mm, <em>α</em> = 103°, <em>d</em><sub>2</sub>/<em>D</em> = 0.1881), the mean vapor volume fraction increased by 59.18 %, and turbulent kinetic energy rose by 32.32 %. Methylene blue degradation experiments showed a 15.88 % removal efficiency after 120 minutes, improving 77.8 % over the baseline. This study investigated a vortex-pressure coupling mechanism through integrated visualization and simulation techniques, thereby facilitating the structural optimization of SEONs and enhancing cavitation performance. The findings provide both theoretical insights and practical guidance for the design and application of SEONs in industrial cleaning and wastewater treatment processes.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"194 \",\"pages\":\"Article 105442\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932225003179\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225003179","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

采用高速成像、计算流体力学(CFD)模拟、正交分解(POD)、小波分析和动态自适应NSGA-II (DANSGA-II)多目标优化等方法,研究了重力作用下自激振荡喷管(SEON)的空化动力学。高速成像显示空化云的形成、分离和坍缩。CFD模拟揭示了SEON腔室内部流场和蒸汽分布,阐明了SEON腔室内空化的演化过程。POD和小波分析表明,空化行为与进口压力之间存在非线性关系,在1.5 MPa时达到峰值。提出了一种新的涡压脉动耦合机制来解释空化云的发展。该机制以腔长(L)、冲击壁角(α)和出口收缩比(d2/D)为设计变量指导结构优化。使用DANSGA-II进行多目标优化,得出最佳喷嘴设计。以情形1为例(L = 10.1 mm, α = 103°,d2/D = 0.1881),平均蒸气体积分数提高了59.18%,湍流动能提高了32.32%。亚甲基蓝降解实验表明,120分钟后,亚甲基蓝的去除率为15.88%,比基线提高77.8%。本研究通过综合可视化和仿真技术研究涡压耦合机理,从而优化SEONs结构,提高空化性能。研究结果为SEONs在工业清洗和废水处理过程中的设计和应用提供了理论见解和实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of the vortex-pressure coupling mechanism in cavitation dynamics for self-excited oscillation nozzles and its structural optimization

Analysis of the vortex-pressure coupling mechanism in cavitation dynamics for self-excited oscillation nozzles and its structural optimization
This study investigates cavitation dynamics in a self-excited oscillation nozzle (SEON) under gravitational influence using high-speed imaging, computational fluid dynamics (CFD) simulations, Proper Orthogonal Decomposition (POD), wavelet analysis, and multi-objective optimization with Dynamic Adaptive NSGA-II (DANSGA-II). High-speed imaging displays the formation, detachment, and collapse of cavitation cloud. CFD simulations reveal the internal flow field and vapor distribution, clarifying cavitation evolution in the SEON chamber. POD and wavelet analyses demonstrate a nonlinear relationship between cavitation behavior and inlet pressure, with peak performance at 1.5 MPa. A novel vortex-pressure pulsation coupling mechanism was proposed to explain cavitation cloud development. This mechanism guided structural optimization by selecting chamber length (L), impingement wall angle (α), and outlet contraction ratio (d2/D) as design variables. Multi-objective optimization using DANSGA-II produced optimal nozzle designs. For example, in Case 1 (L = 10.1 mm, α = 103°, d2/D = 0.1881), the mean vapor volume fraction increased by 59.18 %, and turbulent kinetic energy rose by 32.32 %. Methylene blue degradation experiments showed a 15.88 % removal efficiency after 120 minutes, improving 77.8 % over the baseline. This study investigated a vortex-pressure coupling mechanism through integrated visualization and simulation techniques, thereby facilitating the structural optimization of SEONs and enhancing cavitation performance. The findings provide both theoretical insights and practical guidance for the design and application of SEONs in industrial cleaning and wastewater treatment processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信