用于可见光-红外激光兼容伪装的周期性“L”形光栅超表面

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Ziping Zhou, Yue Liu, Yufang Liu, Mengdan Qian, Kun Yu
{"title":"用于可见光-红外激光兼容伪装的周期性“L”形光栅超表面","authors":"Ziping Zhou,&nbsp;Yue Liu,&nbsp;Yufang Liu,&nbsp;Mengdan Qian,&nbsp;Kun Yu","doi":"10.1016/j.ijthermalsci.2025.110303","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing threat posed by multispectral detectors, it is of urgent significance to achieve simultaneous camouflage compatibility across the visible (VIS), mid-wave infrared (MWIR), long-wave infrared (LWIR) bands, and the 10.6 μm laser wavelength. Here, we propose an “L”-shaped grating metasurface emitter stacked of S1818/Al/Mo/ZnS multilayers. Based on thin-film interference in the multilayer stack, the metasurface can be tuned to exhibit a range of structural colors in the visible region. Under orthogonal polarization illumination, the \"L\"-shaped grating generates a reflection phase difference close to 180°, resulting in the low specular reflectance required for laser radar camouflage (the specular reflectance at 10.6 μm is 0.05). Meanwhile, due to the excellent reflective properties of the Al layer, the metasurface exhibits low average emissivity in the MWIR (ɛ<sub>3–5μm</sub>≈0.026) and LWIR (ɛ<sub>8–14μm</sub> = 0.019) ranges, effectively reducing infrared detectability. Experimental results show that the sample exhibits a specular reflectance of 0.16 at the 10.6 μm. The average emissivity is 0.06 in the MWIR (3–5 μm) band and 0.09 in the LWIR (8–14 μm) band, validating the good compatible camouflage capability both for the infrared bands and the 10.6 μm laser wavelength. Moreover, the structural colors in the visible range closely resemble those of natural objects. This work demonstrates the feasibility of the “L”-shaped grating metasurface multispectral camouflage design strategy.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"220 ","pages":"Article 110303"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic “L”-shaped grating metasurface for VIS-infrared-laser compatible camouflage\",\"authors\":\"Ziping Zhou,&nbsp;Yue Liu,&nbsp;Yufang Liu,&nbsp;Mengdan Qian,&nbsp;Kun Yu\",\"doi\":\"10.1016/j.ijthermalsci.2025.110303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the growing threat posed by multispectral detectors, it is of urgent significance to achieve simultaneous camouflage compatibility across the visible (VIS), mid-wave infrared (MWIR), long-wave infrared (LWIR) bands, and the 10.6 μm laser wavelength. Here, we propose an “L”-shaped grating metasurface emitter stacked of S1818/Al/Mo/ZnS multilayers. Based on thin-film interference in the multilayer stack, the metasurface can be tuned to exhibit a range of structural colors in the visible region. Under orthogonal polarization illumination, the \\\"L\\\"-shaped grating generates a reflection phase difference close to 180°, resulting in the low specular reflectance required for laser radar camouflage (the specular reflectance at 10.6 μm is 0.05). Meanwhile, due to the excellent reflective properties of the Al layer, the metasurface exhibits low average emissivity in the MWIR (ɛ<sub>3–5μm</sub>≈0.026) and LWIR (ɛ<sub>8–14μm</sub> = 0.019) ranges, effectively reducing infrared detectability. Experimental results show that the sample exhibits a specular reflectance of 0.16 at the 10.6 μm. The average emissivity is 0.06 in the MWIR (3–5 μm) band and 0.09 in the LWIR (8–14 μm) band, validating the good compatible camouflage capability both for the infrared bands and the 10.6 μm laser wavelength. Moreover, the structural colors in the visible range closely resemble those of natural objects. This work demonstrates the feasibility of the “L”-shaped grating metasurface multispectral camouflage design strategy.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"220 \",\"pages\":\"Article 110303\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292500626X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292500626X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了应对日益增长的多光谱探测器威胁,实现可见光(VIS)、中波红外(MWIR)、长波红外(LWIR)波段和10.6 μm激光波长的同时伪装兼容具有迫切意义。本文提出了一种由S1818/Al/Mo/ZnS多层叠加而成的“L”形光栅超表面发射体。基于多层堆叠中的薄膜干涉,超表面可以在可见光区域显示一系列的结构颜色。在正交偏振照明下,“L”形光栅产生的反射相位差接近180°,使得激光雷达伪装所需的镜面反射率较低(10.6 μm处的镜面反射率为0.05)。同时,由于铝层具有优异的反射性能,该超表面在MWIR范围内的平均发射率(≈0.026)和LWIR范围内(≈0.019)较低,有效地降低了红外可探测性。实验结果表明,样品在10.6 μm处的镜面反射率为0.16。MWIR波段(3 ~ 5 μm)的平均发射率为0.06,LWIR波段(8 ~ 14 μm)的平均发射率为0.09,对红外波段和10.6 μm激光波长具有良好的兼容伪装能力。此外,可见光范围内的结构颜色与自然物体的结构颜色非常相似。验证了“L”型光栅超表面多光谱伪装设计策略的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic “L”-shaped grating metasurface for VIS-infrared-laser compatible camouflage
In response to the growing threat posed by multispectral detectors, it is of urgent significance to achieve simultaneous camouflage compatibility across the visible (VIS), mid-wave infrared (MWIR), long-wave infrared (LWIR) bands, and the 10.6 μm laser wavelength. Here, we propose an “L”-shaped grating metasurface emitter stacked of S1818/Al/Mo/ZnS multilayers. Based on thin-film interference in the multilayer stack, the metasurface can be tuned to exhibit a range of structural colors in the visible region. Under orthogonal polarization illumination, the "L"-shaped grating generates a reflection phase difference close to 180°, resulting in the low specular reflectance required for laser radar camouflage (the specular reflectance at 10.6 μm is 0.05). Meanwhile, due to the excellent reflective properties of the Al layer, the metasurface exhibits low average emissivity in the MWIR (ɛ3–5μm≈0.026) and LWIR (ɛ8–14μm = 0.019) ranges, effectively reducing infrared detectability. Experimental results show that the sample exhibits a specular reflectance of 0.16 at the 10.6 μm. The average emissivity is 0.06 in the MWIR (3–5 μm) band and 0.09 in the LWIR (8–14 μm) band, validating the good compatible camouflage capability both for the infrared bands and the 10.6 μm laser wavelength. Moreover, the structural colors in the visible range closely resemble those of natural objects. This work demonstrates the feasibility of the “L”-shaped grating metasurface multispectral camouflage design strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信