Quang Ninh Hoang , Sora Lee , Sungho Lee , Hyungbum Park
{"title":"使用AFM测量和有限元建模表征不同纤维表面粗糙度的CFRP界面特性","authors":"Quang Ninh Hoang , Sora Lee , Sungho Lee , Hyungbum Park","doi":"10.1016/j.compositesb.2025.112990","DOIUrl":null,"url":null,"abstract":"<div><div>The microscale surface roughness and surface chemical bonding characteristics of carbon fibers (CFs) vary significantly depending on manufacturing and post-processing conditions, critically influencing the overall mechanical properties of CFRP composites. A comprehensive investigation of both chemical bonding and mechanical interlocking mechanisms at fiber–matrix interface is therefore essential for accurate characterization of interfacial behavior. In this study, a novel modeling approach is developed for the first time by directly incorporating AFM images of CF surfaces, which represent the actual surface topography, into the finite element simulation to systematically investigate interfacial behavior in longitudinal, transverse, and normal directions relative to fibers, which are difficult to evaluate from typical experiments. Three types of CFs with different surface roughness including de-sized CFs, heat-treated CFs, and plasma-treated CFs, are investigated in the interface modeling. Additionally, an idealized CF with a smooth surface was also included to isolate and evaluate the influence of surface roughness itself. Simulations reveal that under normal loading, chemical bonding is the sole interaction at the interface, and interface properties are proportional to CF surface areas. Under transverse and longitudinal loading, both chemical bonding and mechanical interlocking coexist: chemical bonding dominates the early stage of debonding, while mechanical interlocking becomes the primary load transfer mechanism as debonding progresses. It was discovered that the contribution of chemical bonding on interfacial response is weak under influence of surface roughness of CF. This study demonstrated that appropriate numerical characterizations are essential for accurately predicting the properties of composites prior to homogenization analysis of CFRP.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"308 ","pages":"Article 112990"},"PeriodicalIF":14.2000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of CFRP interface properties with varying fiber surface roughness using AFM measurements and finite element modeling\",\"authors\":\"Quang Ninh Hoang , Sora Lee , Sungho Lee , Hyungbum Park\",\"doi\":\"10.1016/j.compositesb.2025.112990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The microscale surface roughness and surface chemical bonding characteristics of carbon fibers (CFs) vary significantly depending on manufacturing and post-processing conditions, critically influencing the overall mechanical properties of CFRP composites. A comprehensive investigation of both chemical bonding and mechanical interlocking mechanisms at fiber–matrix interface is therefore essential for accurate characterization of interfacial behavior. In this study, a novel modeling approach is developed for the first time by directly incorporating AFM images of CF surfaces, which represent the actual surface topography, into the finite element simulation to systematically investigate interfacial behavior in longitudinal, transverse, and normal directions relative to fibers, which are difficult to evaluate from typical experiments. Three types of CFs with different surface roughness including de-sized CFs, heat-treated CFs, and plasma-treated CFs, are investigated in the interface modeling. Additionally, an idealized CF with a smooth surface was also included to isolate and evaluate the influence of surface roughness itself. Simulations reveal that under normal loading, chemical bonding is the sole interaction at the interface, and interface properties are proportional to CF surface areas. Under transverse and longitudinal loading, both chemical bonding and mechanical interlocking coexist: chemical bonding dominates the early stage of debonding, while mechanical interlocking becomes the primary load transfer mechanism as debonding progresses. It was discovered that the contribution of chemical bonding on interfacial response is weak under influence of surface roughness of CF. This study demonstrated that appropriate numerical characterizations are essential for accurately predicting the properties of composites prior to homogenization analysis of CFRP.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"308 \",\"pages\":\"Article 112990\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825009011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825009011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of CFRP interface properties with varying fiber surface roughness using AFM measurements and finite element modeling
The microscale surface roughness and surface chemical bonding characteristics of carbon fibers (CFs) vary significantly depending on manufacturing and post-processing conditions, critically influencing the overall mechanical properties of CFRP composites. A comprehensive investigation of both chemical bonding and mechanical interlocking mechanisms at fiber–matrix interface is therefore essential for accurate characterization of interfacial behavior. In this study, a novel modeling approach is developed for the first time by directly incorporating AFM images of CF surfaces, which represent the actual surface topography, into the finite element simulation to systematically investigate interfacial behavior in longitudinal, transverse, and normal directions relative to fibers, which are difficult to evaluate from typical experiments. Three types of CFs with different surface roughness including de-sized CFs, heat-treated CFs, and plasma-treated CFs, are investigated in the interface modeling. Additionally, an idealized CF with a smooth surface was also included to isolate and evaluate the influence of surface roughness itself. Simulations reveal that under normal loading, chemical bonding is the sole interaction at the interface, and interface properties are proportional to CF surface areas. Under transverse and longitudinal loading, both chemical bonding and mechanical interlocking coexist: chemical bonding dominates the early stage of debonding, while mechanical interlocking becomes the primary load transfer mechanism as debonding progresses. It was discovered that the contribution of chemical bonding on interfacial response is weak under influence of surface roughness of CF. This study demonstrated that appropriate numerical characterizations are essential for accurately predicting the properties of composites prior to homogenization analysis of CFRP.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.