壳寡糖对刺柏锈病病原菌多孔裸子菌的抑菌活性及作用机制研究

IF 4 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Junchi Zhao , Jiahui Jiao , Taijun Fang , Hailan Li , Luchao Bai , Peiqin Li
{"title":"壳寡糖对刺柏锈病病原菌多孔裸子菌的抑菌活性及作用机制研究","authors":"Junchi Zhao ,&nbsp;Jiahui Jiao ,&nbsp;Taijun Fang ,&nbsp;Hailan Li ,&nbsp;Luchao Bai ,&nbsp;Peiqin Li","doi":"10.1016/j.pestbp.2025.106685","DOIUrl":null,"url":null,"abstract":"<div><div><em>Juniperus przewalskii</em>, a keystone species in China's ecologically fragile Sanjiangyuan region, faces severe threats from <em>Gymnosporangium pleoporum</em> rust. This study establishes chitooligosaccharides (COS) as potent antifungal agents against <em>G. pleoporum</em>, dose-dependently suppressing teliospore germination and viability. Integrated physiological analyses revealed COS-induced severe membrane damage evidenced by electrolyte leakage, soluble protein efflux, SEM-confirmed structural deformities, and elevated malondialdehyde indicating lipid peroxidation. Concurrently, COS triggered oxidative catastrophe via reactive oxygen species accumulation with suppression of antioxidant enzymes, while collapsing energy metabolism through adenosine triphosphate depletion and inhibition of electron transport chain enzymes. Transcriptomics identified concentration-dependent differential expression in energy metabolism pathways (glycolysis, oxidative phosphorylation, fatty acid degradation), alongside disrupted protein synthesis and redox homeostasis. Crucially, nine viability-correlated downregulated core genes, including putative orthologs for oxidative defense and aromatic amino acid biosynthesis, exhibited lineage-specific functions. Collectively, COS acts as a multi-target antifungal agent directly disrupting membrane integrity, redox homeostasis, and energy / protein metabolism in rust fungi, distinct from plant-induced resistance. This study establishes the scientific foundation for COS deployment against <em>J. przewalskii</em> rust disease, highlighting its eco-compatible potential through targeted exploitation of essential pathogen vulnerabilities. Furthermore, it positions COS as a cornerstone for precision forestry therapeutics that concurrently achieve pathogen suppression and ecological integrity preservation in vulnerable montane ecosystems.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"215 ","pages":"Article 106685"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifungal activity and function mechanisms of chitooligosaccharide against Gymnosporangium pleoporum, the pathogen causing rust in Juniperus przewalskii\",\"authors\":\"Junchi Zhao ,&nbsp;Jiahui Jiao ,&nbsp;Taijun Fang ,&nbsp;Hailan Li ,&nbsp;Luchao Bai ,&nbsp;Peiqin Li\",\"doi\":\"10.1016/j.pestbp.2025.106685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Juniperus przewalskii</em>, a keystone species in China's ecologically fragile Sanjiangyuan region, faces severe threats from <em>Gymnosporangium pleoporum</em> rust. This study establishes chitooligosaccharides (COS) as potent antifungal agents against <em>G. pleoporum</em>, dose-dependently suppressing teliospore germination and viability. Integrated physiological analyses revealed COS-induced severe membrane damage evidenced by electrolyte leakage, soluble protein efflux, SEM-confirmed structural deformities, and elevated malondialdehyde indicating lipid peroxidation. Concurrently, COS triggered oxidative catastrophe via reactive oxygen species accumulation with suppression of antioxidant enzymes, while collapsing energy metabolism through adenosine triphosphate depletion and inhibition of electron transport chain enzymes. Transcriptomics identified concentration-dependent differential expression in energy metabolism pathways (glycolysis, oxidative phosphorylation, fatty acid degradation), alongside disrupted protein synthesis and redox homeostasis. Crucially, nine viability-correlated downregulated core genes, including putative orthologs for oxidative defense and aromatic amino acid biosynthesis, exhibited lineage-specific functions. Collectively, COS acts as a multi-target antifungal agent directly disrupting membrane integrity, redox homeostasis, and energy / protein metabolism in rust fungi, distinct from plant-induced resistance. This study establishes the scientific foundation for COS deployment against <em>J. przewalskii</em> rust disease, highlighting its eco-compatible potential through targeted exploitation of essential pathogen vulnerabilities. Furthermore, it positions COS as a cornerstone for precision forestry therapeutics that concurrently achieve pathogen suppression and ecological integrity preservation in vulnerable montane ecosystems.</div></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":\"215 \",\"pages\":\"Article 106685\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357525003980\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525003980","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为中国生态脆弱的三江源地区的重要物种,普氏刺柏面临着裸子锈病的严重威胁。本研究证实壳寡糖(COS)是一种有效的抗真菌剂,可以剂量依赖性地抑制远孢子的萌发和活力。综合生理分析显示,cos诱导的严重膜损伤表现为电解质泄漏、可溶性蛋白外溢、扫描电镜证实的结构畸形和丙二醛升高(表明脂质过氧化)。同时,COS通过抑制抗氧化酶的活性氧积累引发氧化灾难,同时通过三磷酸腺苷耗竭和抑制电子传递链酶导致能量代谢崩溃。转录组学鉴定了能量代谢途径(糖酵解、氧化磷酸化、脂肪酸降解)中浓度依赖性的差异表达,以及蛋白质合成和氧化还原稳态的中断。至关重要的是,9个活力相关的下调核心基因,包括氧化防御和芳香氨基酸生物合成的推定同源基因,表现出谱系特异性功能。总的来说,COS作为一种多靶点抗真菌剂,直接破坏锈真菌的膜完整性、氧化还原稳态和能量/蛋白质代谢,这与植物诱导的抗性不同。本研究通过有针对性地利用主要病原菌的脆弱性,突出了病原菌的生态兼容潜力,为应用COS防治普氏锈病奠定了科学基础。此外,它将COS定位为精确林业治疗的基石,同时在脆弱的山地生态系统中实现病原体抑制和生态完整性保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antifungal activity and function mechanisms of chitooligosaccharide against Gymnosporangium pleoporum, the pathogen causing rust in Juniperus przewalskii

Antifungal activity and function mechanisms of chitooligosaccharide against Gymnosporangium pleoporum, the pathogen causing rust in Juniperus przewalskii
Juniperus przewalskii, a keystone species in China's ecologically fragile Sanjiangyuan region, faces severe threats from Gymnosporangium pleoporum rust. This study establishes chitooligosaccharides (COS) as potent antifungal agents against G. pleoporum, dose-dependently suppressing teliospore germination and viability. Integrated physiological analyses revealed COS-induced severe membrane damage evidenced by electrolyte leakage, soluble protein efflux, SEM-confirmed structural deformities, and elevated malondialdehyde indicating lipid peroxidation. Concurrently, COS triggered oxidative catastrophe via reactive oxygen species accumulation with suppression of antioxidant enzymes, while collapsing energy metabolism through adenosine triphosphate depletion and inhibition of electron transport chain enzymes. Transcriptomics identified concentration-dependent differential expression in energy metabolism pathways (glycolysis, oxidative phosphorylation, fatty acid degradation), alongside disrupted protein synthesis and redox homeostasis. Crucially, nine viability-correlated downregulated core genes, including putative orthologs for oxidative defense and aromatic amino acid biosynthesis, exhibited lineage-specific functions. Collectively, COS acts as a multi-target antifungal agent directly disrupting membrane integrity, redox homeostasis, and energy / protein metabolism in rust fungi, distinct from plant-induced resistance. This study establishes the scientific foundation for COS deployment against J. przewalskii rust disease, highlighting its eco-compatible potential through targeted exploitation of essential pathogen vulnerabilities. Furthermore, it positions COS as a cornerstone for precision forestry therapeutics that concurrently achieve pathogen suppression and ecological integrity preservation in vulnerable montane ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信