利用模拟和机器学习对光电特性和电荷传输层进行综合分析,设计和优化基于ca3bii3的太阳能电池

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Bipul Chandra Biswas , Asadul Islam Shimul , Abdulaziz A. Alshihri , Ali El-Rayyes , Mohd Taukeer Khan , Md. Azizur Rahman
{"title":"利用模拟和机器学习对光电特性和电荷传输层进行综合分析,设计和优化基于ca3bii3的太阳能电池","authors":"Bipul Chandra Biswas ,&nbsp;Asadul Islam Shimul ,&nbsp;Abdulaziz A. Alshihri ,&nbsp;Ali El-Rayyes ,&nbsp;Mohd Taukeer Khan ,&nbsp;Md. Azizur Rahman","doi":"10.1016/j.physb.2025.417770","DOIUrl":null,"url":null,"abstract":"<div><div>Ca<sub>3</sub>BiI<sub>3</sub> based solar cells have garnered interest owing to their superior semiconducting characteristics; however, achieving optimal interfacial band alignment with electron transport layers (ETLs) and hole transport layers (HTLs) continues to pose an obstacle for efficiency. This research employs first-principles density functional theory (DFT) to examine the optoelectronic characteristics of Ca<sub>3</sub>BiI<sub>3</sub> perovskite and assess its viability for photovoltaic applications. The device configuration, Ag/FTO/ETL/Ca<sub>3</sub>BiI<sub>3</sub>/HTL/Ni, is examined using three ETLs and six HTLs to determine the optimal material combination. Device parameter optimization, encompassing layer thickness, doping, resistance, and others critical parameters, was performed utilizing the SCAPS-1D simulation tool under AM 1.5 circumstances. The best design, Ag/FTO/IGZO/Ca<sub>3</sub>BiI<sub>3</sub>/PTAA/Ni, exhibited enhanced performance with a power conversion efficiency (PCE) of 27.64 %, an open-circuit voltage (V<sub>OC</sub>) of 0.8436 V, a short-circuit current density (J<sub>SC</sub>) of 38.2142 mA/cm<sup>2</sup>, and a fill factor (FF) of 85.74 %. This study combines machine learning with modeling approaches to enhance future photovoltaic developments.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417770"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of Ca3BiI3-based solar cells through a comprehensive analysis of optoelectronic properties and charge transport layers using simulation and ML\",\"authors\":\"Bipul Chandra Biswas ,&nbsp;Asadul Islam Shimul ,&nbsp;Abdulaziz A. Alshihri ,&nbsp;Ali El-Rayyes ,&nbsp;Mohd Taukeer Khan ,&nbsp;Md. Azizur Rahman\",\"doi\":\"10.1016/j.physb.2025.417770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ca<sub>3</sub>BiI<sub>3</sub> based solar cells have garnered interest owing to their superior semiconducting characteristics; however, achieving optimal interfacial band alignment with electron transport layers (ETLs) and hole transport layers (HTLs) continues to pose an obstacle for efficiency. This research employs first-principles density functional theory (DFT) to examine the optoelectronic characteristics of Ca<sub>3</sub>BiI<sub>3</sub> perovskite and assess its viability for photovoltaic applications. The device configuration, Ag/FTO/ETL/Ca<sub>3</sub>BiI<sub>3</sub>/HTL/Ni, is examined using three ETLs and six HTLs to determine the optimal material combination. Device parameter optimization, encompassing layer thickness, doping, resistance, and others critical parameters, was performed utilizing the SCAPS-1D simulation tool under AM 1.5 circumstances. The best design, Ag/FTO/IGZO/Ca<sub>3</sub>BiI<sub>3</sub>/PTAA/Ni, exhibited enhanced performance with a power conversion efficiency (PCE) of 27.64 %, an open-circuit voltage (V<sub>OC</sub>) of 0.8436 V, a short-circuit current density (J<sub>SC</sub>) of 38.2142 mA/cm<sup>2</sup>, and a fill factor (FF) of 85.74 %. This study combines machine learning with modeling approaches to enhance future photovoltaic developments.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417770\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625008877\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008877","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

基于Ca3BiI3的太阳能电池由于其优越的半导体特性而引起了人们的兴趣;然而,实现与电子传输层(ETLs)和空穴传输层(HTLs)的最佳界面带对齐仍然是提高效率的障碍。本研究采用第一性原理密度泛函理论(DFT)研究了Ca3BiI3钙钛矿的光电特性,并评估了其在光伏应用中的可行性。采用三个ETL和六个HTL对Ag/FTO/ETL/Ca3BiI3/HTL/Ni器件配置进行了研究,以确定最佳材料组合。在AM 1.5环境下,利用SCAPS-1D仿真工具对器件参数进行优化,包括层厚度、掺杂、电阻等关键参数。最佳设计为Ag/FTO/IGZO/Ca3BiI3/PTAA/Ni,功率转换效率(PCE)为27.64%,开路电压(VOC)为0.8436 V,短路电流密度(JSC)为38.2142 mA/cm2,填充系数(FF)为85.74%。本研究将机器学习与建模方法相结合,以增强未来光伏的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and optimization of Ca3BiI3-based solar cells through a comprehensive analysis of optoelectronic properties and charge transport layers using simulation and ML
Ca3BiI3 based solar cells have garnered interest owing to their superior semiconducting characteristics; however, achieving optimal interfacial band alignment with electron transport layers (ETLs) and hole transport layers (HTLs) continues to pose an obstacle for efficiency. This research employs first-principles density functional theory (DFT) to examine the optoelectronic characteristics of Ca3BiI3 perovskite and assess its viability for photovoltaic applications. The device configuration, Ag/FTO/ETL/Ca3BiI3/HTL/Ni, is examined using three ETLs and six HTLs to determine the optimal material combination. Device parameter optimization, encompassing layer thickness, doping, resistance, and others critical parameters, was performed utilizing the SCAPS-1D simulation tool under AM 1.5 circumstances. The best design, Ag/FTO/IGZO/Ca3BiI3/PTAA/Ni, exhibited enhanced performance with a power conversion efficiency (PCE) of 27.64 %, an open-circuit voltage (VOC) of 0.8436 V, a short-circuit current density (JSC) of 38.2142 mA/cm2, and a fill factor (FF) of 85.74 %. This study combines machine learning with modeling approaches to enhance future photovoltaic developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信