正梯度代数上的数值同调规律

IF 0.8 2区 数学 Q2 MATHEMATICS
Quanshui Wu, Bojuan Yi
{"title":"正梯度代数上的数值同调规律","authors":"Quanshui Wu,&nbsp;Bojuan Yi","doi":"10.1016/j.jalgebra.2025.08.016","DOIUrl":null,"url":null,"abstract":"<div><div>We study numerical regularities for complexes over noncommutative noetherian locally finite <span><math><mi>N</mi></math></span>-graded algebras <em>A</em> such as CM-regularity, Tor-regularity (Ext-regularity) and Ex-regularity, which are the supremum or infimum degrees of some associated canonical complexes. We introduce their companions—lowercase named regularities, which are defined by taking the infimum or supremum degrees of the respective canonical associated complexes. We show that for any right bounded complex <em>X</em> with finitely generated cohomologies, the supremum degree of <span><math><mi>R</mi><msub><mrow><munder><mrow><mi>Hom</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> coincides with the opposite of the infimum degree of <em>X</em> if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is semisimple. If <em>A</em> has a balanced dualizing complex and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is semisimple, we prove that the CM-regularity of <em>X</em> coincides with the supremum degree of <span><math><mi>R</mi><msub><mrow><munder><mrow><mi>Hom</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>X</mi><mo>)</mo></math></span> for any left bounded complex <em>X</em> with finitely generated cohomologies.</div><div>Several inequalities concerning the numerical regularities and the supremum or infimum degrees of derived Hom or derived tensor complexes are given for noncommutative noetherian locally finite <span><math><mi>N</mi></math></span>-graded algebras. Some of these are generalizations of Jørgensen's results on the inequalities between the CM-regularity and Tor-regularity, some are new even in the connected graded case. Conditions are given under which the inequalities become equalities by establishing two technical lemmas.</div><div>Following Kirkman, Won and Zhang, we also use the numerical AS-regularity (resp. little AS-regularity) to study Artin-Schelter regular property (finite-dimensional property) for noetherian <span><math><mi>N</mi></math></span>-graded algebras. We prove that the numerical AS-regularity of <em>A</em> is zero if and only if that <em>A</em> is an <span><math><mi>N</mi></math></span>-graded AS-regular algebra under some mild conditions, which generalizes a result of Dong-Wu and a result of Kirkman-Won-Zhang. If <em>A</em> has a balanced dualizing complex and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is semisimple, we prove that the little AS-regularity of <em>A</em> is zero if and only if <em>A</em> is finite-dimensional.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 677-748"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical homological regularities over positively graded algebras\",\"authors\":\"Quanshui Wu,&nbsp;Bojuan Yi\",\"doi\":\"10.1016/j.jalgebra.2025.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study numerical regularities for complexes over noncommutative noetherian locally finite <span><math><mi>N</mi></math></span>-graded algebras <em>A</em> such as CM-regularity, Tor-regularity (Ext-regularity) and Ex-regularity, which are the supremum or infimum degrees of some associated canonical complexes. We introduce their companions—lowercase named regularities, which are defined by taking the infimum or supremum degrees of the respective canonical associated complexes. We show that for any right bounded complex <em>X</em> with finitely generated cohomologies, the supremum degree of <span><math><mi>R</mi><msub><mrow><munder><mrow><mi>Hom</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> coincides with the opposite of the infimum degree of <em>X</em> if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is semisimple. If <em>A</em> has a balanced dualizing complex and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is semisimple, we prove that the CM-regularity of <em>X</em> coincides with the supremum degree of <span><math><mi>R</mi><msub><mrow><munder><mrow><mi>Hom</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>X</mi><mo>)</mo></math></span> for any left bounded complex <em>X</em> with finitely generated cohomologies.</div><div>Several inequalities concerning the numerical regularities and the supremum or infimum degrees of derived Hom or derived tensor complexes are given for noncommutative noetherian locally finite <span><math><mi>N</mi></math></span>-graded algebras. Some of these are generalizations of Jørgensen's results on the inequalities between the CM-regularity and Tor-regularity, some are new even in the connected graded case. Conditions are given under which the inequalities become equalities by establishing two technical lemmas.</div><div>Following Kirkman, Won and Zhang, we also use the numerical AS-regularity (resp. little AS-regularity) to study Artin-Schelter regular property (finite-dimensional property) for noetherian <span><math><mi>N</mi></math></span>-graded algebras. We prove that the numerical AS-regularity of <em>A</em> is zero if and only if that <em>A</em> is an <span><math><mi>N</mi></math></span>-graded AS-regular algebra under some mild conditions, which generalizes a result of Dong-Wu and a result of Kirkman-Won-Zhang. If <em>A</em> has a balanced dualizing complex and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is semisimple, we prove that the little AS-regularity of <em>A</em> is zero if and only if <em>A</em> is finite-dimensional.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 677-748\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004934\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004934","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了非交换noether局部有限n阶代数A上复形的数值规律,如cm -正则、tor -正则(ext -正则)和ex -正则,它们是一些相关正则复形的最大或最小度。我们引入它们的伙伴——小写命名规律,它们是通过取相应正则相关复合体的最小或最高度来定义的。我们证明了对于任何具有有限生成上同调的右有界复X,如果A0是半单质的,RHom_A(X,A0)的最大次恰好与X的最小次相反。如果A有一个平衡对偶复合体,A0是半单复数,我们证明了X的cm -正则性与RHom_A(A0,X)对任何具有有限生成上同调的左有界复合体X的最大次重合。给出了非交换noether局部有限n阶代数的几个不等式,这些不等式与导出的Hom或导出的张量复形的数值规律和上、下阶有关。其中一些是Jørgensen关于cm -正则性和tor -正则性之间的不等式的推广,一些甚至是在连通梯度情况下的新结果。通过建立两个技术引理,给出了不等式变成等式的条件。继Kirkman, Won和Zhang之后,我们还使用了数值as -正则性。研究noether n阶代数的Artin-Schelter正则性(有限维性质)。证明了A的数值as正则性当且仅当A是n阶as正则代数时为零,推广了Dong-Wu和Kirkman-Won-Zhang的结果。当A具有平衡对偶复合体且A0是半单质时,证明了A的小as正则性当且仅当A是有限维时为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical homological regularities over positively graded algebras
We study numerical regularities for complexes over noncommutative noetherian locally finite N-graded algebras A such as CM-regularity, Tor-regularity (Ext-regularity) and Ex-regularity, which are the supremum or infimum degrees of some associated canonical complexes. We introduce their companions—lowercase named regularities, which are defined by taking the infimum or supremum degrees of the respective canonical associated complexes. We show that for any right bounded complex X with finitely generated cohomologies, the supremum degree of RHom_A(X,A0) coincides with the opposite of the infimum degree of X if A0 is semisimple. If A has a balanced dualizing complex and A0 is semisimple, we prove that the CM-regularity of X coincides with the supremum degree of RHom_A(A0,X) for any left bounded complex X with finitely generated cohomologies.
Several inequalities concerning the numerical regularities and the supremum or infimum degrees of derived Hom or derived tensor complexes are given for noncommutative noetherian locally finite N-graded algebras. Some of these are generalizations of Jørgensen's results on the inequalities between the CM-regularity and Tor-regularity, some are new even in the connected graded case. Conditions are given under which the inequalities become equalities by establishing two technical lemmas.
Following Kirkman, Won and Zhang, we also use the numerical AS-regularity (resp. little AS-regularity) to study Artin-Schelter regular property (finite-dimensional property) for noetherian N-graded algebras. We prove that the numerical AS-regularity of A is zero if and only if that A is an N-graded AS-regular algebra under some mild conditions, which generalizes a result of Dong-Wu and a result of Kirkman-Won-Zhang. If A has a balanced dualizing complex and A0 is semisimple, we prove that the little AS-regularity of A is zero if and only if A is finite-dimensional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信